Near-Earth asteroid (3200) Phaethon. Characterization of its orbit, spin state, and thermophysical parameters

Context. The near-Earth asteroid (3200) Phaethon is an intriguing object: its perihelion is at only 0.14 au and is associated with the Geminid meteor stream. Aims. We aim to use all available disk-integrated optical data to derive a reliable convex shape model of Phaethon. By interpreting the available space- and ground-based thermal infrared data and Spitzer spectra using a thermophysical model, we also aim to further constrain its size, thermal inertia, and visible geometric albedo. Methods. We applied the convex inversion method to the new optical data obtained by six instruments and to previous observations. The convex shape model was then used as input for the thermophysical modeling. We also studied the long-term stability of Phaethon’s orbit and spin axis with a numerical orbital and rotation-state integrator. Results. We present a new convex shape model and rotational state of Phaethon: a sidereal rotation period of 3.603958(2) h and ecliptic coordinates of the preferred pole orientation of (319°, −39°) with a 5° uncertainty. Moreover, we derive its size ( D = 5.1 ± 0.2 km), thermal inertia (Γ = 600 ± 200 J m –2 s –1/2 K –1 ), geometric visible albedo ( p V = 0.122 ± 0.008), and estimate the macroscopic surface roughness. We also find that the Sun illumination at the perihelion passage during the past several thousand years is not connected to a specific area on the surface, which implies non-preferential heating.

[1]  G. Neukum,et al.  The Near-Earth Objects Follow-up Program. IV. CCD Photometry in 1996-1999 , 2002 .

[2]  P. Michel,et al.  Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.

[3]  S. Green,et al.  A thermophysical analysis of the (1862) Apollo Yarkovsky and YORP effects , 2013, 1305.3109.

[4]  P. Jenniskens Meteor Showers and their Parent Comets , 2006 .

[5]  Mikko Kaasalainen,et al.  DAMIT: a database of asteroid models , 2010 .

[6]  D. Jewitt,et al.  OBSERVATIONS OF 1999 YC AND THE BREAKUP OF THE GEMINID STREAM PARENT , 2008, 0805.2636.

[7]  MARCS: MODEL STELLAR ATMOSPHERES AND THEIR APPLICATION TO THE PHOTOMETRIC CALIBRATION OF THE SPITZER SPACE TELESCOPE INFRARED SPECTROGRAPH (IRS) , 2004, astro-ph/0406104.

[8]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[9]  Julie Ziffer,et al.  Spectroscopy of B-type Asteroids: Subgroups and meteorite analogs , 2010 .

[10]  D. Vokrouhlický,et al.  Orbit and bulk density of the OSIRIS-REx target Asteroid (101955) Bennu , 2014, 1402.5573.

[11]  Jing Li,et al.  ACTIVITY IN GEMINID PARENT (3200) PHAETHON , 2010, 1009.2710.

[12]  Karri Muinonen,et al.  Optimization Methods for Asteroid Lightcurve Inversion. II. The Complete Inverse Problem , 2001 .

[13]  M. Zolensky,et al.  Thermal metamorphism of the C, G, B, and F asteroids seen from the 0.7 μm, 3 μm, and UV absorption strengths in comparison with carbonaceous chondrites , 1996 .

[14]  A. Chamberlin,et al.  4015 Wilson-Harrington, 2201 Oljato, and 3200 Phaethon: Search for CN Emission , 1996 .

[15]  V. Al'i-Lagoa,et al.  Thermophysical modeling of asteroids from WISE thermal infrared data – Significance of the shape model and the pole orientation uncertainties , 2015, 1504.04199.

[16]  Stefano Mottola,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[17]  Jing Li,et al.  RECURRENT PERIHELION ACTIVITY IN (3200) PHAETHON , 2013, 1304.1430.

[18]  D. Lauretta,et al.  Thermal infrared observations and thermophysical characterization of OSIRIS-REx target asteroid (101955) Bennu , 2014 .

[19]  I. Williams,et al.  The Geminid meteor stream and asteroid 3200 Phaethon , 1993 .

[20]  A. Harris,et al.  Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations , 2012 .

[21]  D. Vokrouhlický,et al.  Efficient Lie-Poisson Integrator for Secular Spin Dynamics of Rigid Bodies , 2005 .

[22]  A. Harris,et al.  PHOTOMETRIC OBSERVATIONS OF 125 ASTEROIDS , 1997 .

[23]  Makoto Yoshikawa,et al.  Solar-Radiation Heating Effects on 3200 Phaethon , 2009 .

[24]  Petr Pravec,et al.  Lightcurves of 26 Near-Earth Asteroids☆ , 1998 .

[25]  K. Tsiganis,et al.  Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower , 2010 .

[26]  R. Arendt DIRBE COMET TRAILS , 2014, 1408.1466.

[27]  J. Bauer,et al.  REFINED ROTATIONAL PERIOD, POLE SOLUTION, AND SHAPE MODEL FOR (3200) PHAETHON , 2014, 1407.7886.

[28]  A. V. Sergeev,et al.  Formation of asteroid pairs by rotational fission , 2010, Nature.

[29]  D. Brownlee,et al.  Meteoritics and Planetary Science Supplement , 2019 .

[30]  Jing Li,et al.  THE DUST TAIL OF ASTEROID (3200) PHAETHON , 2013, 1306.3741.

[31]  B. Warner,et al.  A practical guide to lightcurve photometry and analysis , 2006 .

[32]  Daniel J. Scheeres,et al.  Radar Imaging of Binary Near-Earth Asteroid (66391) 1999 KW4 , 2006, Science.

[33]  D. Vokrouhlický,et al.  The YORP effect with finite thermal conductivity , 2004 .

[34]  J. Licandro,et al.  The nature of comet-asteroid transition object (3200) Phaethon , 2007 .

[35]  D. Kinoshita,et al.  Apollo asteroid 2005 UD : split nucleus of (3200) Phaethon? , 2006 .

[36]  A. Castro-Tirado,et al.  The Geminid meteoroid stream as a potential meteorite dropper: a case study , 2013, 1309.6465.

[37]  S. Green,et al.  Physical characterisation of near-Earth asteroid (1620) Geographos. Reconciling radar and thermal-infrared observations , 2014, 1407.2127.

[38]  D. Kinoshita,et al.  Surface heterogeneity of 2005 UD from photometric observations , 2007 .

[39]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[40]  Munetaka Ueno,et al.  Asteroid Catalog Using AKARI: AKARI/IRC Mid-Infrared Asteroid Survey , 2011 .

[41]  B. Warner NEAR-EARTH ASTEROID LIGHTCURVE ANALYSIS AT CS3-PALMER DIVIDE STATION: 2014 OCTOBER-DECEMBER. , 2015, The Minor planet bulletin.

[42]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[43]  Guy J. Consolmagno,et al.  The thermal conductivity of meteorites: New measurements and analysis , 2010 .

[44]  J. Blum,et al.  Thermophysical properties of near-Earth asteroid (341843) 2008 EV5 from WISE data , 2013, 1310.6715.

[45]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[46]  Munetaka Ueno,et al.  The AKARI/IRC mid-infrared all-sky survey , 2010, 1003.0270.

[47]  D. Vokrouhlický,et al.  Secular spin dynamics of inner main-belt asteroids , 2006 .

[48]  A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method , 2011 .

[49]  T. Galushina,et al.  The force model for asteroid (3200) Phaethon , 2015 .

[50]  M. Kaasalainen,et al.  Optimization Methods for Asteroid Lightcurve Inversion: I. Shape Determination , 2001 .

[51]  David Vokrouhlický,et al.  The vector alignments of asteroid spins by thermal torques , 2003, Nature.

[52]  M. Zolensky,et al.  Absorption bands near three micrometers in diffuse reflectance spectra of carbonaceous chondrites: Comparison with asteroids , 1997 .

[53]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[54]  B. Rozitis,et al.  Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA , 2014, Nature.

[55]  S. Hasegawa,et al.  (25143) Itokawa : The power of radiometric techniques for the interpretation of remote thermal observations in the light of the Hayabusa rendezvous results (New Insights into Near-Earth and Main-Belt Asteroids) , 2014, 1404.5842.

[56]  Humberto Campins,et al.  Low Perihelion Near-Earth Asteroids , 2008 .

[57]  A. J. Meadows,et al.  Infrared observations of the extinct cometary candidate minor planet (3200) 1983TB , 1985 .

[58]  G. Ryabova Mathematical modelling of the Geminid meteoroid stream , 2007 .

[59]  H. Matsuhara,et al.  ALBEDO PROPERTIES OF MAIN BELT ASTEROIDS BASED ON THE ALL-SKY SURVEY OF THE INFRARED ASTRONOMICAL SATELLITE AKARI , 2012, 1211.2889.

[60]  D. Vokrouhlický,et al.  Inner main belt asteroids in Slivan states , 2015 .

[61]  D. Oszkiewicz,et al.  Asteroid models from the Lowell photometric database , 2016, 1601.02909.