A novel asymmetric hybrid supercapacitor based on Li2FeSiO4 and activated carbon electrodes

Abstract A novel, hybrid supercapacitor is fabricated with Li2FeSiO4 (LFSO) as the negative electrode and activated carbon (AC) as the positive electrode in a standard, non-aqueous 1.0 M LiPF6-EC/DMC electrolyte. The electrochemical properties of the LFSO/AC hybrid supercapacitor are investigated by means of cyclic voltammetry (CV), charge/discharge (C/D) measurement and electrochemical impedance spectroscopy (EIS). The CV results reveal the typical capacitance behavior of the LFSO/AC cell within the potential range of 0–3 V. The LFSO/AC cell presents a high discharge capacitance (DSC) of 49 F g−1 at a current density of 1 mA cm−2 and delivers a specific energy of 43 Wh kg−1 and a specific power of 200 W kg−1. The cell exhibits excellent cycleability and greater efficiency over 1000 cycles.

[1]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[2]  Ralph E. White,et al.  A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System , 2005 .

[3]  J. Tarascon,et al.  CoO2, the end member of the LixCoO2 solid solution , 1996 .

[4]  O. Park,et al.  Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes , 2002 .

[5]  M. Yoshio,et al.  Electrochemical performance of carbon-coated lithium manganese silicate for asymmetric hybrid supercapacitors , 2010 .

[6]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[7]  A Cooper,et al.  Development of a lead-acid battery for a hybrid electric vehicle , 2004 .

[8]  Brian E. Conway,et al.  Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices , 2003 .

[9]  R. Vasanthi,et al.  Olivine-type nanoparticle for hybrid supercapacitors , 2008 .

[10]  C. Keffer,et al.  Crystal structure of twinned low-temperature lithium phosphate , 1967 .

[11]  Mark W. Verbrugge,et al.  Analytic Solutions and Experimental Data for Cyclic Voltammetry and Constant-Power Operation of Capacitors Consistent with HEV Applications , 2006 .

[12]  Glenn G. Amatucci,et al.  Power-ion battery: Bridging the gap between Li-ion and supercapacitor chemistries , 2004 .

[13]  N. Renganathan,et al.  A novel high power symmetric ZnO/carbon aerogel composite electrode for electrochemical supercapacitor , 2006 .

[14]  Michel Armand,et al.  Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material , 2005 .

[15]  Karim Zaghib,et al.  Unsupported claims of ultrafast charging of LiFePO4 Li-ion batteries , 2009 .

[16]  Robert Dominko,et al.  Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials , 2006 .

[17]  N. Sato Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles , 2001 .