Vectorial Metabolism and the Evolution of Transport Systems

Early concepts of transport suggested that enzymes and transporters are evolutionarily related. In this brief minireview, evidence is presented suggesting that, contrary to this view, transport proteins and enzymes evolved independently of each other as two distinct classes of proteins from

[1]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994 .

[2]  B. Rosen,et al.  Mechanism of the ArsA ATPase. , 1999, Biochimica et biophysica acta.

[3]  M. Saier,et al.  Phylogenetic, structural and functional analyses of the LacI‐GalR family of bacterial transcription factors , 1995, FEBS letters.

[4]  G. Robillard,et al.  Structure/function studies on the bacterial carbohydrate transporters, enzymes II, of the phosphoenolpyruvate-dependent phosphotransferase system. , 1999, Biochimica et biophysica acta.

[5]  M. Saier,et al.  TRAP transporters: an ancient family of extracytoplasmic solute-receptor-dependent secondary active transporters. , 1999, Microbiology.

[6]  G. Robillard,et al.  The 5 A projection structure of the transmembrane domain of the mannitol transporter enzyme II. , 1999, Journal of molecular biology.

[7]  F. Neidhardt,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase systems , 1996 .

[8]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[9]  P. Weigel,et al.  Molecular cloning, identification, and sequence of the hyaluronan synthase gene from group A Streptococcus pyogenes. , 1993, The Journal of biological chemistry.

[10]  M. Saier,et al.  Families of transmembrane transporters selective for amino acids and their derivatives. , 2000, Microbiology.

[11]  C. Whitfield,et al.  A Novel Pathway for O-Polysaccharide Biosynthesis in Salmonella enterica Serovar Borreze* , 1996, The Journal of Biological Chemistry.

[12]  G. Robillard,et al.  Enzymes II of the phosphoenolpyruvate-dependent sugar transport systems: a review of their structure and mechanism of sugar transport. , 1988, Biochimica et biophysica acta.

[13]  A. Agarwal,et al.  Sequence homology between bacteriorhodopsin and G‐protein coupled receptors: exon shuffling or evolution by duplication? , 1993, FEBS letters.

[14]  M. Saier Genome archeology leading to the characterization and classification of transport proteins. , 1999, Current opinion in microbiology.

[15]  J. Monod,et al.  Bacterial permeases. , 1957, Bacteriological reviews.

[16]  P. Mitchell Transport of phosphate across the osmotic barrier of Micrococcus pyogenes; specificity and kinetics. , 1954, Journal of general microbiology.

[17]  H. Lodish,et al.  A family of fatty acid transporters conserved from mycobacterium to man. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[18]  M. Saier,et al.  Modular assembly of voltage-gated channel proteins: a sequence analysis and phylogenetic study. , 1999, Journal of molecular microbiology and biotechnology.

[19]  K. H. Kalk,et al.  The structure of an energy-coupling protein from bacteria, IIBcellobiose, reveals similarity to eukaryotic protein tyrosine phosphatases. , 1997, Structure.

[20]  Winfried Boos,et al.  Maltose/Maltodextrin System of Escherichia coli: Transport, Metabolism, and Regulation , 1998, Microbiology and Molecular Biology Reviews.

[21]  J. M. Saier Families of Proteins Forming Transmembrane Channels , 2000, The Journal of membrane biology.

[22]  P. Mitchell The Ninth Sir Hans Krebs Lecture. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. , 1979, European journal of biochemistry.

[23]  M. Saier,et al.  Evolutionary relationships between sugar kinases and transcriptional repressors in bacteria. , 1994, Microbiology.

[24]  I. Paulsen,et al.  Membrane transport proteins: implications of sequence comparisons. , 1992, Current opinion in cell biology.

[25]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[26]  M. Saier,et al.  A novel ubiquitous family of putative efflux transporters. , 2000, Journal of molecular microbiology and biotechnology.

[27]  PETER MITCHELL,et al.  Group-Translocation: A Consequence of Enzyme-Catalysed Group-Transfer , 1958, Nature.

[28]  G. Robillard,et al.  The 5 angstrom projection structure of the transmembrane domain of the mannitol transporter enzyme II , 1999 .

[29]  M H Saier,et al.  The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. , 1993, Critical reviews in biochemistry and molecular biology.

[30]  M. Saier,et al.  Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. , 1998, Advances in microbial physiology.

[31]  H. Kaback,et al.  Helix packing in polytopic membrane proteins: the lactose permease of Escherichia coli. , 1997, Current opinion in structural biology.

[32]  P. Dimroth,et al.  Energy conservation in the decarboxylation of dicarboxylic acids by fermenting bacteria , 1998, Archives of Microbiology.

[33]  I. Paulsen,et al.  Proton-dependent multidrug efflux systems , 1996, Microbiological reviews.

[34]  M H Saier,et al.  The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. , 1999, Journal of molecular microbiology and biotechnology.

[35]  O. Gribouval,et al.  A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis , 1998, Nature Genetics.

[36]  S. Schauder,et al.  Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. , 1998, Journal of molecular biology.

[37]  G. Banting,et al.  The arachidonate-activatable, NADPH oxidase-associated H+ channel is contained within the multi-membrane-spanning N-terminal region of gp91-phox. , 1997, The Biochemical journal.

[38]  M. Saier,et al.  Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. , 1995, Trends in biochemical sciences.

[39]  I. Paulsen,et al.  Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes--an analysis. , 1993, Gene.

[40]  D. Maskell,et al.  Bacterial polysaccharide synthesis and gene nomenclature. , 1996, Trends in microbiology.

[41]  J. H. Park,et al.  Phylogenetic Characterization of the MIP Family of Transmembrane Channel Proteins , 1996, The Journal of Membrane Biology.

[42]  M. Saier,et al.  Modular multidomain phosphoryl transfer proteins of bacteria. , 1997, Current opinion in structural biology.

[43]  M. Saier,et al.  Metabolite‐induced metabolons: the activation of transporter–enzyme complexes by substrate binding , 1999, Molecular microbiology.

[44]  P. Postma,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. , 1985, Microbiological reviews.

[45]  B. Rosen Families of arsenic transporters. , 1999, Trends in microbiology.

[46]  J. Lanza Except in the Light of Evolution , 1998 .

[47]  E. Cabib,et al.  Vectorial synthesis of a polysaccharide by isolated plasma membranes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Perry,et al.  Regulation of ribosome synthesis. , 1972, The Biochemical journal.

[49]  F. Hantash,et al.  Membrane Association of the Escherichia coli Enterobactin Synthase Proteins EntB/G, EntE, and EntF , 2000, Journal of bacteriology.

[50]  R. Potashnik,et al.  Lysosomal cystine transport. Effect of intralysosomal pH and membrane potential. , 1987, The Journal of biological chemistry.

[51]  T. Dobzhansky Nothing in Biology Makes Sense Except in the Light of Evolution , 1973 .

[52]  M. Saier,et al.  Is FatP a long‐chain fatty acid transporter? , 1999, Molecular microbiology.

[53]  I. Paulsen,et al.  Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R F Doolittle,et al.  Determining divergence times with a protein clock: update and reevaluation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[55]  G R Jacobson,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. , 1993, Microbiological reviews.

[56]  D. Kelly,et al.  TRAP transporters: a new family of periplasmic solute transport systems encoded by the dctPQM genes of Rhodobacter capsulatus and by homologs in diverse gram-negative bacteria , 1997, Journal of bacteriology.

[57]  M H Saier,et al.  Phylogenetic relationships among bacteriorhodopsins. , 1994, Research in microbiology.

[58]  M. Maiden,et al.  Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes. , 1990, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[59]  M. Saier Phylogenetic approaches to the identification and characterization of protein families and superfamilies. , 1996, Microbial & comparative genomics.

[60]  M. Saier,et al.  Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution , 1994, Microbiological reviews.

[61]  J. Reizer,et al.  The bacterial phosphotransferase system: new frontiers 30 years later , 1994, Molecular microbiology.

[62]  W. Doolittle Fun with genealogy. , 1997, Proceedings of the National Academy of Sciences of the United States of America.