A New Model for Void Coalescence by Internal Necking

A micromechanical model for predicting the strain increment required to bring a damaged material element from the onset of void coalescence up to final fracture is developed based on simple kinematics arguments. This strain increment controls the unloading slope and the energy dissipated during the final step of material failure. Proper prediction of the final drop of the load carrying capacity is an important ingredient of any ductile fracture model, especially at high stress triaxiality. The model has been motivated and verified by comparison to a large set of finite element void cell calculations.

[1]  R. Becker The effect of porosity distribution on ductile failure , 1987 .

[2]  Thomas Pardoen,et al.  Micromechanics-based model for trends in toughness of ductile metals , 2003 .

[3]  A. Ragab Application of an extended void growth model with strain hardening and void shape evolution to ductile fracture under axisymmetric tension , 2004 .

[4]  W. Brocks,et al.  Micromechanical modelling of the behaviour of ductile materials including particles , 1997 .

[5]  Jacques Besson,et al.  Anisotropic ductile fracture: Part II: theory , 2004 .

[6]  F. Delannay,et al.  Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars , 1998 .

[7]  F. Delannay,et al.  The coalescence of voids in prestrained notched round copper bars , 1998 .

[8]  Albert S. Kobayashi,et al.  Elastic-Plastic Fracture , 1979 .

[9]  A. Pineau,et al.  Coalescence-Controlled Anisotropic Ductile Fracture , 1999 .

[10]  D. Fabrègue,et al.  A constitutive model for elastoplastic solids containing primary and secondary voids , 2008 .

[11]  Viggo Tvergaard,et al.  VOID GROWTH AND FAILURE IN NOTCHED BARS , 1988 .

[12]  F. Delannay,et al.  Assessment of void growth models from porosity measurements in cold-drawn copper bars , 1998 .

[13]  F. Delannay,et al.  Micromechanics of room and high temperature fracture in 6xxx Al alloys , 2007 .

[14]  A. A. Benzerga Micromechanics of coalescence in ductile fracture , 2002 .

[15]  P. Suquet,et al.  Exact results and approximate models for porous viscoplastic solids , 1994 .

[16]  Viggo Tvergaard,et al.  Studies of void growth in a thin ductile layer between ceramics , 1997 .

[17]  A. Deschamps,et al.  Grain boundary versus transgranular ductile failure , 2003 .

[18]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[19]  F. Mcclintock,et al.  Local criteria for ductile fracture , 1968 .

[20]  Jean-Baptiste Leblond,et al.  An improved Gurson-type model for hardenable ductile metals , 1995 .

[21]  Claudio Ruggieri,et al.  Numerical modeling of ductile crack growth in 3-D using computational cell elements , 1996 .

[22]  F. Mudry,et al.  Ductile rupture of A508 steel under nonradial loading , 1985 .

[23]  C. Shih,et al.  Ductile crack growth−III. Transition to cleavage fracture incorporating statistics , 1996 .

[24]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[25]  W. Brocks,et al.  Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials , 1995 .

[26]  John W. Hutchinson,et al.  A computational approach to ductile crack growth under large scale yielding conditions , 1995 .

[27]  A. K. Pilkey,et al.  Damage characterization and damage percolation modelling in aluminum alloy sheet , 2000 .

[28]  A. B. Richelsen,et al.  Dilatant plasticity or upper bound estimates for porous ductile solids , 1994 .

[29]  Jean-Baptiste Leblond,et al.  Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities , 1994 .

[30]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[31]  J. Leblond,et al.  Accelerated void growth in porous ductile solids containing two populations of cavities , 2000 .

[32]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[33]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[34]  W. Brocks,et al.  Modeling of plane strain ductile rupture , 2003 .

[35]  Viggo Tvergaard,et al.  An analysis of ductile rupture in notched bars , 1984 .

[36]  C. Shih,et al.  Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales , 1995 .

[37]  Arnaud Weck,et al.  Visualization by X-ray tomography of void growth and coalescence leading to fracture in model materials , 2008 .

[38]  Thomas Pardoen,et al.  Numerical simulation of low stress triaxiality ductile fracture , 2006 .

[39]  R. H. Dodds,et al.  Simulation of ductile crack growth using computational cells: numerical aspects , 2000 .

[40]  R. McMeeking,et al.  Three-dimensional void growth before a blunting crack tip , 1989 .

[41]  Zhiliang Zhang,et al.  A new failure criterion for the Gurson-Tvergaard dilational constitutive model , 1994 .

[42]  Frank A. McClintock,et al.  PLASTICITY ASPECTS OF FRACTURE , 1971 .

[43]  John W. Hutchinson,et al.  Influence of yield surface curvature on flow localization in dilatant plasticity , 1985 .

[44]  J. Devaux,et al.  Numerical study of initiation, stable crack growth, and maximum load, with a ductile fracture criterion based on the growth of holes , 1979 .

[45]  E. Maire,et al.  On the competition between particle fracture and particle decohesion in metal matrix composites , 2004 .

[46]  Jean-Baptiste Leblond,et al.  Recent extensions of Gurson's model for porous ductile metals , 1997 .

[47]  Thomas Pardoen,et al.  Mode I fracture of sheet metal , 2004 .

[48]  P. Thomason,et al.  Ductile Fracture of Metals , 1990 .

[49]  T. Pardoena,et al.  An extended model for void growth and coalescence , 2022 .

[50]  Thomas Pardoen,et al.  The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension , 2011 .

[51]  Thomas Pardoen,et al.  Failure Mechanisms of Metals , 2007 .

[52]  T. Pardoen,et al.  Growth and coalescence of penny-shaped voids in metallic alloys , 2006 .

[53]  Thomas Pardoen,et al.  Predictive model for void nucleation and void growth controlled ductility in quasi-eutectic cast aluminium alloys , 2005 .

[54]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[55]  F. Mudry,et al.  Experimental study of cavity growth in ductile rupture , 1985 .

[56]  C. Shih,et al.  Ductile crack growth—II. Void nucleation and geometry effects on macroscopic fracture behavior , 1995 .

[57]  A. K. Pilkey,et al.  Void coalescence within periodic clusters of particles , 2003 .

[58]  Jacques Besson,et al.  Anisotropic ductile fracture: Part I: experiments , 2004 .

[59]  Jean-Baptiste Leblond,et al.  Theoretical models for void coalescence in porous ductile solids. II. Coalescence “in columns” , 2001 .

[60]  Xiaosheng Gao,et al.  Cell model for nonlinear fracture analysis – II. Fracture- process calibration and verification , 1998 .

[61]  R. Becker,et al.  The effect of void shape on void growth and ductility in axisymmetric tension tests , 1989 .

[62]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .