Distinct Distances on Curves Via Rigidity

It is shown that $$N$$N points on a real algebraic curve of degree $$n$$n in $${\mathbb R}^d$$Rd always determine $$\gtrsim _{n,d}$$≳n,d$${N^{1+\frac{1}{4}}}$$N1+14 distinct distances, unless the curve is a straight line or the closed geodesic of a flat torus. In the latter case, there are arrangements of $$N$$N points which determine $$\lesssim $$≲$${N}$$N distinct distances. The method may be applied to other quantities of interest to obtain analogous exponent gaps. An important step in the proof involves understanding the structural rigidity of certain frameworks on curves.

[1]  Chun-Yen Shen,et al.  Fourier analysis and expanding phenomena in finite fields , 2009, 0909.5471.

[2]  János Pach,et al.  Distinct distances on algebraic curves in the plane , 2013, Combinatorics, Probability and Computing.

[3]  J. Milnor On the Betti numbers of real varieties , 1964 .

[4]  G. Elekes,et al.  A Note on the Number of Distinct Distances , 1999 .

[5]  P. Erdös On Sets of Distances of n Points , 1946 .

[6]  Micha Sharir,et al.  Distinct distances on two lines , 2013, J. Comb. Theory, Ser. A.

[7]  Rom Pinchasi,et al.  The Minimum Number of Distinct Areas of Triangles Determined by a Set of n Points in the Plane , 2008, SIAM J. Discret. Math..

[8]  Lajos Rónyai,et al.  A Combinatorial Problem on Polynomials and Rational Functions , 2000, J. Comb. Theory, Ser. A.

[9]  I. Shafarevich Basic algebraic geometry , 1974 .

[10]  Anthony Nixon,et al.  Rigidity of Frameworks Supported on Surfaces , 2010, SIAM J. Discret. Math..

[11]  A. Harnack,et al.  Ueber die Vieltheiligkeit der ebenen algebraischen Curven , 1876 .

[12]  J. Rafael Sendra,et al.  Rational Algebraic Curves: A Computer Algebra Approach , 2007 .

[13]  R. Thom Sur L'Homologie des Varietes Algebriques Réelles , 1965 .

[14]  Oliver Roche-Newton,et al.  On an application of Guth-Katz theorem , 2011, 1103.1354.

[15]  John P. D'Angelo,et al.  Helical CR structures and sub-Riemannian geodesics , 2008, 0802.1730.

[16]  György Elekes,et al.  How to find groups? (and how to use them in Erdős geometry?) , 2012, Comb..

[17]  B. Roth,et al.  The rigidity of graphs , 1978 .

[18]  Larry Guth,et al.  On the Erdos distinct distance problem in the plane , 2010, 1011.4105.

[19]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[20]  Thomas Dubé,et al.  The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..

[21]  Micha Sharir,et al.  On the Number of Incidences Between Points and Curves , 1998, Combinatorics, Probability and Computing.