On the design of static genetic memory

This A fundamental memory unit in traditional computers is typically constituted by several MOSFETs. For biological systems, it is uneasy to realize such a unit for data memorization. How to synthesize a specific storage unit is a preliminary but an important step toward the success of future bio-computers. This paper proposes a structure of a fundamental memory unit necessary with I/O configuration for data read and write. The simulation study has been conducted for verification.

[1]  Martyn Amos,et al.  A reconfigurable NAND/NOR genetic logic gate , 2012, BMC Systems Biology.

[2]  Yan Niu,et al.  Construction and Enhancement of a Minimal Genetic AND Logic Gate , 2008, Applied and Environmental Microbiology.

[3]  Nawwaf N. Kharma,et al.  Computational simulation of a gene regulatory network implementing an extendable synchronous single-input delay flip-flop , 2012, Biosyst..

[4]  G. D. Gatta,et al.  Systems and Synthetic biology: tackling genetic networks and complex diseases , 2009, Heredity.

[5]  Rahul Sarpeshkar,et al.  Synthetic Biology: A Unifying View and Review Using Analog Circuits , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[6]  G. Church,et al.  Synthetic Gene Networks That Count , 2009, Science.

[7]  Nicolas E. Buchler,et al.  On schemes of combinatorial transcription logic , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  O. Gotoh,et al.  Reconstruction of transcription-translation dynamics with a model of gene networks. , 2008, Journal of theoretical biology.

[9]  Elizabeth Van Itallie,et al.  Modeling synthetic gene oscillators. , 2012, Mathematical biosciences.

[10]  J. Tyson,et al.  Design principles of biochemical oscillators , 2008, Nature Reviews Molecular Cell Biology.

[11]  Christopher A. Voigt,et al.  Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’ , 2011, Nature.

[12]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[13]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[14]  Ahmad S. Khalil,et al.  Synthetic biology: applications come of age , 2010, Nature Reviews Genetics.

[15]  J. Collins,et al.  Synthetic Biology Moving into the Clinic , 2011, Science.

[16]  Nicolas E. Buchler,et al.  Nonlinear protein degradation and the function of genetic circuits. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Chun-Liang Lin,et al.  Design of synthetic biological logic circuits based on evolutionary algorithm. , 2013, IET systems biology.

[18]  Nicolae Radu Zabet,et al.  Design Principles of Transcriptional Logic Circuits , 2010, ALIFE.

[19]  Antonis Papachristodoulou,et al.  Designing Genetic Feedback Controllers , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[20]  Eckart Zitzler,et al.  Design of a biological half adder , 2007 .

[21]  M. di Bernardo,et al.  A comparative analysis of synthetic genetic oscillators , 2010, Journal of The Royal Society Interface.

[22]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[23]  Rafael Silva-Rocha,et al.  Mining logic gates in prokaryotic transcriptional regulation networks , 2008, FEBS letters.

[24]  M. Elowitz,et al.  Reconstruction of genetic circuits , 2005, Nature.

[25]  Drew Endy,et al.  Design and Analysis of Genetically Encoded Counters , 2012, CSBio.