Knowledge Extraction from Twitter Towards Infectious Diseases in Spanish

[1]  Lei Zhang,et al.  Sentiment Analysis and Opinion Mining , 2017, Encyclopedia of Machine Learning and Data Mining.

[2]  Ma. Regina E. Estuar,et al.  Infodemiology for Syndromic Surveillance of Dengue and Typhoid Fever in the Philippines , 2017 .

[3]  G. Eysenbach,et al.  Pandemics in the Age of Twitter: Content Analysis of Tweets during the 2009 H1N1 Outbreak , 2010, PloS one.

[4]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[5]  Salas-ZrateMara del Pilar,et al.  Automatic detection of satire in Twitter , 2017 .

[6]  R. M. Wolfe,et al.  Vaccination or Immunization? The Impact of Search Terms on the Internet , 2005, Journal of health communication.

[7]  Mohamed M. Mostafa,et al.  More than words: Social networks' text mining for consumer brand sentiments , 2013, Expert Syst. Appl..

[8]  Gregory Shakhnarovich,et al.  Learning Representations for Automatic Colorization , 2016, ECCV.

[9]  Lipika Dey,et al.  Opinion mining from noisy text data , 2008, AND '08.

[10]  Rafael Valencia-García,et al.  Sentiment Polarity Detection in Social Networks: An Approach for Asthma Disease Management , 2017, ICCSAMA.

[11]  Mario Andrés Paredes-Valverde,et al.  Sentiment Analysis in Spanish for Improvement of Products and Services: A Deep Learning Approach , 2017, Sci. Program..

[12]  Jyoti Ramteke,et al.  Election result prediction using Twitter sentiment analysis , 2016, 2016 International Conference on Inventive Computation Technologies (ICICT).

[13]  Feng Chen,et al.  From Twitter to detector: real-time traffic incident detection using social media data , 2016 .

[14]  Juan D. Velásquez,et al.  Twitter for marijuana infodemiology , 2017, WI.

[15]  Jose Yunam Cuan-Baltazar,et al.  Misinformation of COVID-19 on the Internet: Infodemiology Study , 2020, JMIR Public Health and Surveillance.

[16]  Casey Fiesler,et al.  “Participant” Perceptions of Twitter Research Ethics , 2018 .

[17]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[18]  Vladik Kreinovich,et al.  A simple probabilistic explanation of term frequency-inverse document frequency (tf-idf) heuristic (and variations motivated by this explanation) , 2017, Int. J. Gen. Syst..

[19]  José Medina-Moreira,et al.  Opinion Mining for Measuring the Social Perception of Infectious Diseases. An Infodemiology Approach , 2018, CITI.

[20]  Miguel Ángel Rodríguez-García,et al.  Sentiment Analysis on Tweets about Diabetes: An Aspect-Level Approach , 2017, Comput. Math. Methods Medicine.

[21]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[22]  I. Hernández-García,et al.  Assessment of Health Information About COVID-19 Prevention on the Internet: Infodemiological Study , 2020, JMIR Public Health and Surveillance.

[23]  Gunther Eysenbach,et al.  SARS and Population Health Technology , 2003, Journal of medical Internet research.

[24]  G. Eysenbach Medicine 2.0: Social Networking, Collaboration, Participation, Apomediation, and Openness , 2008, Journal of medical Internet research.

[25]  Deepayan Bhowmik,et al.  Fake News Identification on Twitter with Hybrid CNN and RNN Models , 2018, SMSociety.

[26]  Mayuram S. Krishnan,et al.  Organizational Adoption of Web 2.0 Technologies: An Empirical Analysis , 2012, J. Organ. Comput. Electron. Commer..

[27]  Baharudin B. Baharum,et al.  Sentiment Classification Using Sentence-level Lexical Based Semantic Orientation of Online Reviews , 2011 .

[28]  Mario Andrés Paredes-Valverde,et al.  Sentiment Classification of Spanish Reviews: An Approach based on Feature Selection and Machine Learning Methods , 2016, J. Univers. Comput. Sci..

[29]  Gunther Eysenbach,et al.  Infodemiology: Tracking Flu-Related Searches on the Web for Syndromic Surveillance , 2006, AMIA.

[30]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.

[31]  Choo-Yee Ting,et al.  Tweet sentiment analysis using deep learning with nearby locations as features , 2020 .

[32]  José Medina-Moreira,et al.  Prevención de enfermedades infecciosas basada en el análisis inteligente en RRSS y participación ciudadana , 2019, Proces. del Leng. Natural.

[33]  G. Eysenbach Infodemiology and Infoveillance: Framework for an Emerging Set of Public Health Informatics Methods to Analyze Search, Communication and Publication Behavior on the Internet , 2009, Journal of medical Internet research.

[34]  Soo-Min Kim,et al.  Identifying and Analyzing Judgment Opinions , 2006, NAACL.

[35]  José Medina-Moreira,et al.  Evaluating Information-Retrieval Models and Machine-Learning Classifiers for Measuring the Social Perception towards Infectious Diseases , 2019, Applied Sciences.

[36]  Rafael Valencia-García,et al.  Detecting misogyny in Spanish tweets. An approach based on linguistics features and word embeddings , 2021, Future Gener. Comput. Syst..

[37]  Tulay Koru-Sengul,et al.  The Utility of Social Media in Providing Information on Zika Virus , 2017, Cureus.

[38]  Helen Hockx-Yu,et al.  The web as history , 2018, Internet Histories.

[39]  Fabian Birzele,et al.  An Introduction to Machine Learning , 2020, Clinical pharmacology and therapeutics.

[40]  Jessica Patterson,et al.  Dengue, Zika and Chikungunya: Emerging Arboviruses in the New World , 2016, The western journal of emergency medicine.

[41]  Nikos Vasilakis,et al.  The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers , 2016, Acta Tropica.

[42]  Tomás Baviera Técnicas para el Análisis de Sentimiento en Twitter: Aprendizaje Automático Supervisado y SentiStrength , 2017 .

[43]  Miguel Ángel Rodríguez-García,et al.  Automatic detection of satire in Twitter: A psycholinguistic-based approach , 2017, Knowl. Based Syst..

[44]  Rafael Valencia-García,et al.  Ontology-driven aspect-based sentiment analysis classification: An infodemiological case study regarding infectious diseases in Latin America , 2020, Future Generation Computer Systems.

[45]  Erik Cambria,et al.  Recent Trends in Deep Learning Based Natural Language Processing , 2017, IEEE Comput. Intell. Mag..

[46]  N. Pearce,et al.  [Traditional epidemiology, modern epidemiology and public health]. , 1996, Epidemiologia e prevenzione.