Recycling intermediate steps to improve Hamiltonian Monte Carlo
暂无分享,去创建一个
[1] Andrew Gelman,et al. The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..
[2] John K. Kruschke,et al. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .
[3] Nando de Freitas,et al. Adaptive Hamiltonian and Riemann manifold Monte Carlo samplers , 2013, ICML 2013.
[4] M. Betancourt. Generalizing the No-U-Turn Sampler to Riemannian Manifolds , 2013, 1304.1920.
[5] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[6] Jun S. Liu,et al. Locally weighted Markov chain Monte Carlo , 2015, 1506.08852.
[7] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[8] James T. Thorson,et al. Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo , 2017 .
[9] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[10] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[11] Babak Shahbaba,et al. Spherical Hamiltonian Monte Carlo for Constrained Target Distributions , 2013, ICML.
[12] Radford M. Neal. An improved acceptance procedure for the hybrid Monte Carlo algorithm , 1992, hep-lat/9208011.
[13] J. M. Sanz-Serna,et al. Compressible generalized hybrid Monte Carlo. , 2014, The Journal of chemical physics.
[14] Babak Shahbaba,et al. Split Hamiltonian Monte Carlo , 2011, Stat. Comput..
[15] Yee Whye Teh,et al. Relativistic Monte Carlo , 2016, AISTATS.
[16] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[17] John Salvatier,et al. Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..
[18] D. Hastie,et al. Model choice using reversible jump Markov chain Monte Carlo , 2012 .
[19] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[20] L. Carin,et al. Monomial Gamma Monte Carlo Sampling , 2016 .
[21] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[22] Liam Paninski,et al. Auxiliary-variable Exact Hamiltonian Monte Carlo Samplers for Binary Distributions , 2013, NIPS.
[23] Ben Calderhead,et al. A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.
[24] Andrew Gelman,et al. Handbook of Markov Chain Monte Carlo , 2011 .
[25] Xiangyu Wang,et al. Towards Unifying Hamiltonian Monte Carlo and Slice Sampling , 2016, NIPS.
[26] A. Kennedy,et al. Acceptances and autocorrelations in hybrid Monte Carlo , 1991 .
[27] H. Tjelmeland,et al. Using all Metropolis-Hastings proposals to estimate mean values , 2004 .
[28] D. Frenkel. Speed-up of Monte Carlo simulations by sampling of rejected states. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[29] M. Betancourt,et al. On the geometric ergodicity of Hamiltonian Monte Carlo , 2016, Bernoulli.
[30] O. Kallenberg. Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.