Deficiency of Orexin Receptor Type 1 in Dopaminergic Neurons Increases Novelty-Induced Locomotion and Exploration

Orexin signaling in the ventral tegmental area and substantia nigra promotes locomotion and reward processing, but it is not clear whether dopaminergic cells directly mediate these effects. We show that dopaminergic neurons in these areas mainly express orexin receptor subtype 1 (Ox1R). In contrast, only a minor population in the medial ventral tegmental area express orexin receptor subtype 2 (Ox2R). To analyze the functional role of Ox1R signaling in dopaminergic neurons, we deleted Ox1R specifically in dopamine transporter-expressing neurons of mice and investigated the functional consequences. The deletion of Ox1R increased locomotor activity and exploration during exposure to novel environments or when intracerebroventricularely injected with orexin. Spontaneous activity in home cages, anxiety, reward processing, and energy metabolism did not change. Positron emission tomography imaging revealed that Ox1R signaling in dopaminergic neurons affected distinct neural circuits depending on the stimulation mode. In line with an increase of neural activity in lateral paragigantocellular nucleus (LPGi) of Ox1RΔDAT mice, we found that dopaminergic projections innervate the LPGi in regions where the inhibitory dopamine receptor subtype D2 but not the excitatory D1 subtype resides. These data suggest a crucial regulatory role of Ox1R signaling in dopaminergic neurons in novelty-induced locomotion and exploration.

[1]  S. Arber,et al.  Networking brainstem and basal ganglia circuits for movement , 2022, Nature Reviews Neuroscience.

[2]  B. Lowell,et al.  Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity , 2021, Nature Communications.

[3]  M. Fendt,et al.  Orexin deficiency modulates cognitive flexibility in a sex‐dependent manner , 2020, Genes, brain, and behavior.

[4]  T. Sakurai,et al.  Evolution of Orexin Neuropeptide System: Structure and Function , 2020, Frontiers in Neuroscience.

[5]  M. Walton,et al.  Maternal high-fat diet during lactation reprograms the dopaminergic circuitry in mice. , 2020, The Journal of clinical investigation.

[6]  G. Aston-Jones,et al.  Sex Differences in Demand for Highly Palatable Foods: Role of the Orexin System , 2020, The international journal of neuropsychopharmacology.

[7]  Martin E. Hess,et al.  The Fat Mass and Obesity-Associated Protein (FTO) Regulates Locomotor Responses to Novelty via D2R Medium Spiny Neurons. , 2019, Cell reports.

[8]  K. Karabekiroğlu,et al.  Decreased serum orexin A levels in drug-naive children with attention deficit and hyperactivity disorder , 2019, Neurological Sciences.

[9]  Cui Liu,et al.  Orexins increase the firing activity of nigral dopaminergic neurons and participate in motor control in rats , 2018, Journal of neurochemistry.

[10]  P. Whelan,et al.  Optogenetic Activation of A11 Region Increases Motor Activity , 2018, Front. Neural Circuits.

[11]  R. Malenka,et al.  PARALLEL CIRCUITS FROM THE BED NUCLEI OF STRIA TERMINALIS TO THE LATERAL HYPOTHALAMUS DRIVE OPPOSING EMOTIONAL STATES , 2018, Nature Neuroscience.

[12]  J. Berke What does dopamine mean? , 2018, Nature Neuroscience.

[13]  Silvia Arber,et al.  Locomotor speed control circuits in the caudal brainstem , 2017, Nature.

[14]  S. Borgland,et al.  Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons. , 2017, Cell reports.

[15]  J. Mauer,et al.  Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity , 2016, Cell.

[16]  K. Mackie,et al.  Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons , 2016, Nature Communications.

[17]  M. Howe,et al.  Rapid signaling in distinct dopaminergic axons during locomotion and reward , 2016, Nature.

[18]  Antoine Adamantidis,et al.  Awake dynamics and brain-wide direct inputs of hypothalamic MCH and orexin networks , 2016, Nature Communications.

[19]  C. Gerfen,et al.  Dopamine D2 receptors gate generalization of conditioned threat responses through mTORC1 signaling in the extended amygdala , 2016, Molecular Psychiatry.

[20]  David E. Moorman,et al.  Motivational activation: a unifying hypothesis of orexin/hypocretin function , 2014, Nature Neuroscience.

[21]  P. Whelan,et al.  Dopamine: a parallel pathway for the modulation of spinal locomotor networks , 2014, Front. Neural Circuits.

[22]  H. Feldman,et al.  Clinical practice. Attention deficit-hyperactivity disorder in children and adolescents. , 2014, The New England journal of medicine.

[23]  C. Molnár,et al.  Orexinergic Input to Dopaminergic Neurons of the Human Ventral Tegmental Area , 2013, PloS one.

[24]  J. Swanson,et al.  Clinical practice: Adult attention deficit-hyperactivity disorder. , 2013, The New England journal of medicine.

[25]  E. Bézard,et al.  D1 Dopamine Receptor-Mediated LTP at GABA Synapses Encodes Motivation to Self-Administer Cocaine in Rats , 2013, The Journal of Neuroscience.

[26]  J. Roeper Dissecting the diversity of midbrain dopamine neurons , 2013, Trends in Neurosciences.

[27]  A. Inutsuka,et al.  The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions , 2013, Front. Endocrinol..

[28]  T. Sakurai,et al.  Role of orexin in modulating arousal, feeding, and motivation , 2013, Front. Behav. Neurosci..

[29]  Xiang Zhou,et al.  New Modules Are Added to Vibrissal Premotor Circuitry with the Emergence of Exploratory Whisking , 2013, Neuron.

[30]  G. Paxinos,et al.  Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates , 2012 .

[31]  G. Mies,et al.  Whiskers Area as Extracerebral Reference Tissue for Quantification of Rat Brain Metabolism Using 18F-FDG PET: Application to Focal Cerebral Ischemia , 2011, The Journal of Nuclear Medicine.

[32]  J. Brüning,et al.  Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism , 2011, Nature Cell Biology.

[33]  C. Berridge,et al.  Hypocretin/orexin in arousal and stress , 2010, Brain Research.

[34]  N. Narayanan,et al.  Metabolic hormones, dopamine circuits, and feeding , 2010, Frontiers in Neuroendocrinology.

[35]  David J. Anderson,et al.  Two Different Forms of Arousal in Drosophila Are Oppositely Regulated by the Dopamine D1 Receptor Ortholog DopR via Distinct Neural Circuits , 2009, Neuron.

[36]  P. Carrive,et al.  Hypocretin /orexin contributes to the expression of some but not all forms of stress and arousal , 2009, The European journal of neuroscience.

[37]  J. Bolam,et al.  Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat , 2008, Neuroscience.

[38]  R. Palmiter Is dopamine a physiologically relevant mediator of feeding behavior? , 2007, Trends in Neurosciences.

[39]  F. Tronche,et al.  Analysis of dopamine transporter gene expression pattern − generation of DAT‐iCre transgenic mice , 2007, The FEBS journal.

[40]  Eva Lindqvist,et al.  Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons , 2007, Proceedings of the National Academy of Sciences.

[41]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[42]  Rainer Schrader,et al.  Fast and robust registration of PET and MR images of human brain , 2004, NeuroImage.

[43]  William J. A. Eiler,et al.  D1 dopamine receptor regulates alcohol‐motivated behaviors in the bed nucleus of the stria terminalis in alcohol‐preferring (P) rats , 2003, Synapse.

[44]  H. Haas,et al.  Excitation of Ventral Tegmental Area Dopaminergic and Nondopaminergic Neurons by Orexins/Hypocretins , 2003, The Journal of Neuroscience.

[45]  A. Deutch,et al.  Anatomical substrates of orexin–dopamine interactions: lateral hypothalamic projections to the ventral tegmental area , 2002, Neuroscience.

[46]  H. Haas,et al.  Selective excitation of GABAergic neurons in the substantia nigra of the rat by orexin/hypocretin in vitro , 2002, Regulatory Peptides.

[47]  C. Saper,et al.  Differential expression of orexin receptors 1 and 2 in the rat brain , 2001, The Journal of comparative neurology.

[48]  T. Sakurai,et al.  Orexin-induced hyperlocomotion and stereotypy are mediated by the dopaminergic system 1 1 Published on the World Wide Web on 27 June 2000. , 2000, Brain Research.

[49]  T. Maeda,et al.  Distribution of dopamine-immunoreactive fibers in the rat brainstem , 2000, Journal of Chemical Neuroanatomy.

[50]  A. N. van den Pol,et al.  Neurons Containing Hypocretin (Orexin) Project to Multiple Neuronal Systems , 1998, The Journal of Neuroscience.

[51]  P K Banerjee,et al.  Noninvasive methods for quantitating blood time-activity curves from mouse PET images obtained with fluorine-18-fluorodeoxyglucose. , 1998, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[52]  S. Carr,et al.  Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior , 1998, Cell.

[53]  F E Bloom,et al.  The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  David E. Moorman,et al.  Multiple roles for orexin/hypocretin in addiction. , 2012, Progress in brain research.

[55]  S. Carr,et al.  Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. , 1998, Cell.