Design, construction and simulation of a multipurpose system for precision movement of control rods in nuclear reactors

Abstract This article presents the design and implementation of a microcontroller-based system for the automatic movement of control rods in nuclear reactors of either power or research types. This system is controlled automatically, is linked to a personal computer system, and has manual controlling ability as well. The important features of this system are: automatic scram of the control rods, activation of alarm in emergency situations, and the ability to tune the control rod movement course both upwards and downwards. In this system, a small tank has been improvised as a coolant reservoir for pool type reactors such as Tehran Research Reactor and its water level is continuously adjusted by special sensors. Also, this system can be applied for controlling various types of control rods such as the regulating rods, safety rods and shim rods; can be connected to all reactor measurement tools and systems such as the period meter, power meter and flux meter; and can receive feedback signals from them. The devised system can be calibrated with these measurement tools by two special potentiometers in the related electronic board. The processes of this system have been simulated by the SIMULINK tool kit of MATLAB software and all responses of the system, including oscillation and transient responses, have been analyzed.