Organic matter in Seyfert 2 nuclei: Comparison with our Galactic center lines of sight

We present ESO - Very Large Telescope and ESA - Infrared Space Observatory 3 to 4 µm spectra of Seyfert 2 nuclei as compared to our galactic center lines of sight. The diffuse interstellar medium probed in both environments displays the characteristic 3.4 µm aliphatic CH stretch absorptions of refractory carbonaceous material. The profile of this absorption feature is similar in all sources, indicating the CH2/CH3 ratios of the carbon chains present in the refractory components of the grains are the same in Seyfert 2 inner regions. At longer wavelengths the circumstellar contamination of most of the galactic lines of sight precludes the identification of other absorption bands arising from the groups constitutive of the aliphatics seen at 3.4 µm. The clearer continuum produced by the Seyfert 2 nuclei represents promising lines of sight to constrain the existence or absence of strongly infrared active chemical groups such as the carbonyl one, important to understand the role of oxygen insertion in interstellar grains. The Spitzer Space Telescope spectrometer will soon allow one to investigate the importance of aliphatics on a much larger extragalactic sample.

[1]  Willem A. Schutte,et al.  UV-photoprocessing of interstellar ice analogs: New infrared spectroscopic results , 2003 .

[2]  Ralf Bender,et al.  The universe in 3D : First observations with SPIFFI, the infrared integral field spectrometer for the VLT , 2003 .

[3]  R. Maiolino,et al.  Revealing the Active Galactic Nucleus in the Superantennae through L-Band Spectroscopy , 2003, astro-ph/0308535.

[4]  G. H'ebrard,et al.  Oxygen Gas-Phase Abundance Revisited , 2003, astro-ph/0303586.

[5]  E. Dartois,et al.  Combined VLT ISAAC/ISO SWS spectroscopy of two protostellar sources. The importance of minor solid state features , 2002 .

[6]  J. Hough,et al.  3.4 Micron Feature on the Shoulder of Ice-Band Absorptions in Three Luminous Young Stellar Objects: IRAS 18511+0146, IRAS 21413+5442, and IRAS 04579+4703 , 2002 .

[7]  D. Caldwell,et al.  Hydrocarbons, Ices, and “XCN” in the Line of Sight toward the Galactic Center , 2002 .

[8]  A. Tielens,et al.  Ice features in the mid-IR spectra of galactic nuclei , 2002, astro-ph/0202163.

[9]  M. Imanishi 3-4 Micron Spectroscopy of Seyfert 2 Nuclei to Quantitatively Assess the Energetic Importance of Compact Nuclear Starbursts , 2001, astro-ph/0112299.

[10]  Y. Doi,et al.  Mid-Infrared Spectral Energy Distribution of NGC 1068 with 0.″1 Spatial Resolution , 2001, astro-ph/0108413.

[11]  D. Meyer,et al.  Interstellar Abundance Standards Revisited , 2001 .

[12]  Thomas J. Chester,et al.  The 2MASS Large Galaxy Atlas , 2001 .

[13]  A. Tielens,et al.  Circumstellar Carbonaceous Material Associated with Late-Type Dusty WC Wolf-Rayet Stars , 2001 .

[14]  J. Greenberg,et al.  UV photodestruction of CH bonds and the evolution of the 3.4 mu m feature carrier. II. The case of hydrogenated carbon grains , 2001 .

[15]  J. Greenberg,et al.  UV photodestruction of CH bonds and the evolution of the 3.4 mu m feature carrier. I. The case of aliphatic and aromatic molecular species , 2001 .

[16]  S. Derenne,et al.  Solid state CP/MAS 13 C NMR of the insoluble organic matter of the Orgueil and Murchison meteorites: quantitative study , 2000 .

[17]  M. Imanishi,et al.  Energy Diagnoses of Nine Infrared Luminous Galaxies Based on 3-4 Micron Spectra , 2000, astro-ph/0008092.

[18]  M. Imanishi The 3.4-μm absorption feature towards three obscured active galactic nuclei , 2000, astro-ph/0008093.

[19]  D. Lutz,et al.  The Composition and Distribution of Dust along the Line of Sight toward the Galactic Center , 2000, astro-ph/0002421.

[20]  E. Chatzichristou Multicolor Optical Imaging of Infrared-warm Seyfert Galaxies. I. Introduction and Sample Selection , 1999, astro-ph/9912198.

[21]  D. Rigopoulou,et al.  A Large Mid-Infrared Spectroscopic and Near-Infrared Imaging Survey of Ultraluminous Infrared Galaxies: Their Nature and Evolution , 1999, astro-ph/9908300.

[22]  Astronomy,et al.  A Hubble Space Telescope Imaging Survey of Nearby Active Galactic Nuclei , 1998, astro-ph/9803123.

[23]  M. Pastoriza,et al.  Optical and Far-Infrared Emission of IRAS Seyfert Galaxies , 1997 .

[24]  Y. Pendleton Laboratory comparisons of organic materials to interstellar dust and the Murchison meteorite. , 1995, Planetary and space science.

[25]  Alexander G. G. M. Tielens,et al.  Near-infrared absorption spectroscopy of interstellar hydrocarbon grains , 1994 .

[26]  P. Hickson Atlas of Compact Groups of Galaxies , 1994 .

[27]  S. Veilleux,et al.  Infrared Spectroscopy of Seyfert 2 Galaxies: A Look through the Obscuring Torus? II. , 1994 .

[28]  M. de Vries,et al.  A search for C60 in carbonaceous chondrites. , 1993, Geochimica et cosmochimica acta.

[29]  K. Sellgren,et al.  The interstellar C-H stretching band near 3.4 microns: constraints on the composition of organic material in the diffuse interstellar medium. , 1991, The Astrophysical journal.

[30]  P. Roche,et al.  An atlas of mid-infrared spectra of galaxy nuclei , 1991 .

[31]  T. Wdowiak,et al.  Insoluble organic material of the Orgueil carbonaceous chondrite and the unidentified infrared bands. , 1988, The Astrophysical journal.

[32]  D. Allen,et al.  Diffuse interstellar absorption bands between 2.9 and 4.0 µm , 1981, Nature.

[33]  J. R. Houck,et al.  Infrared Spectroscopy In Astronomy , 1981, Other Conferences.

[34]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[35]  Y. Pendleton,et al.  The Organic Refractory Material in the Diffuse Interstellar Medium: Mid-Infrared Spectroscopic Constraints , 2002 .

[36]  J. Brucato,et al.  Hydrogenation of carbon grains by exposure to hydrogen atoms: Implications for the 3.4 μm interstellar absorption band , 2002 .

[37]  J. Mathis Interstellar dust and extinction , 1987 .

[38]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .