Tree-based modeling of complex interactions of phosphorus loadings and environmental factors.

[1]  J. P. Riley,et al.  A modified single solution method for the determination of phosphate in natural waters , 1962 .

[2]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[3]  Joel C. Trexler,et al.  Nontraditional Regression Analyses , 1993 .

[4]  A. Bottcher,et al.  Everglades agricultural area (EAA) : water, soil, crop, and environmental management , 1994 .

[5]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[6]  D. Anderson,et al.  Water and Nitrogen Management of Sugarcane Grown on Sandy, High-Water-Table Soil , 1998 .

[7]  K. Reddy,et al.  Phosphorus biogeochemistry in subtropical ecosystems , 1999 .

[8]  P. M. Gale,et al.  Phosphorus Retention in Streams and Wetlands: A Review , 1999 .

[9]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[10]  Alaa Ali,et al.  TEMPORAL AND SPATIAL CHARACTERIZATION OF RAINFALL OVER CENTRAL AND SOUTH FLORIDA 1 , 2000 .

[11]  Heathwaite,et al.  Characterising phosphorus loss in surface and subsurface hydrological pathways , 2000, The Science of the total environment.

[12]  J. Baker,et al.  Assessing Landscape Condition Relative to Water Resources in the Western United States: A Strategic Approach , 2000 .

[13]  T. Tamm,et al.  Nutrient runoff dynamics in a rural catchment: influence of land-use changes, climatic fluctuations and ecotechnological measures , 2000 .

[14]  G. De’ath,et al.  CLASSIFICATION AND REGRESSION TREES: A POWERFUL YET SIMPLE TECHNIQUE FOR ECOLOGICAL DATA ANALYSIS , 2000 .

[15]  G. Shields,et al.  Variations in the Global Phosphorus Cycle , 2000 .

[16]  Ronald D. Jones,et al.  Phosphorus Biogeochemistry and the Impact of Phosphorus Enrichment: Why Is the Everglades so Unique? , 2001, Ecosystems.

[17]  J. D. Stuck,et al.  Farm-level studies of particulate phosphorus transport in the Everglades Agricultural Area , 2001 .

[18]  James W. Porter,et al.  The Everglades, Florida Bay, and coral reefs of the Florida Keys : an ecosystem sourcebook , 2001 .

[19]  D F Boesch,et al.  Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. , 2001, Journal of environmental quality.

[20]  Forrest T. Izuno,et al.  Phosphorus load reductions under best management practices for sugarcane cropping systems in the Everglades Agricultural Area , 2002 .

[21]  N. Rabalais,et al.  Beyond Science into Policy: Gulf of Mexico Hypoxia and the Mississippi River , 2002 .

[22]  G. De’ath MULTIVARIATE REGRESSION TREES: A NEW TECHNIQUE FOR MODELING SPECIES–ENVIRONMENT RELATIONSHIPS , 2002 .

[23]  Gretchen G. Moisen,et al.  Comparing five modelling techniques for predicting forest characteristics , 2002 .

[24]  S. Jørgensen,et al.  Contribution of point sources and diffuse sources to nitrogen and phosphorus loads in lowland river tributaries , 2003 .

[25]  W. Thuiller BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change , 2003 .

[26]  D. Solomatine,et al.  Model trees as an alternative to neural networks in rainfall—runoff modelling , 2003 .

[27]  JAMES R. MILLER,et al.  Spatial Extrapolation: The Science of Predicting Ecological Patterns and Processes , 2004 .

[28]  W. Hargrove,et al.  Potential of Multivariate Quantitative Methods for Delineation and Visualization of Ecoregions , 2004, Environmental management.

[29]  R. Alexander,et al.  Estimates of diffuse phosphorus sources in surface waters of the United States using a spatially referenced watershed model. , 2004, Water science and technology : a journal of the International Association on Water Pollution Research.

[30]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[31]  Peter J. A. Kleinman,et al.  Phosphorus loss from land to water: integrating agricultural and environmental management , 2001, Plant and Soil.

[32]  J. Dozier,et al.  Estimating the spatial distribution of snow water equivalent in an alpine basin using binary regression tree models: the impact of digital elevation data and independent variable selection , 2005 .

[33]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[34]  Dimitri P. Solomatine,et al.  Neural networks and M5 model trees in modelling water level-discharge relationship , 2005, Neurocomputing.

[35]  S. Daroub,et al.  Application of the Soil Taxonomy Key to the Organic Soils of the Everglades Agricultural Area1 , 2005 .

[36]  L. F. R. Reis,et al.  Multi-Reservoir Operation Planning Using Hybrid Genetic Algorithm and Linear Programming (GA-LP): An Alternative Stochastic Approach , 2005 .

[37]  Keith Beven,et al.  A framework for predicting delivery of phosphorus from agricultural land using a decision-tree approach , 2006 .

[38]  Sabine Grunwald,et al.  GIS‐BASED WATER QUALITY MODELING IN THE SANDUSKY WATERSHED, OHIO, USA 1 , 2006 .

[39]  Winfried Schröder,et al.  GIS, geostatistics, metadata banking, and tree-based models for data analysis and mapping in environmental monitoring and epidemiology. , 2006, International journal of medical microbiology : IJMM.

[40]  Timothy C. Coburn,et al.  Environmental Soil-Landscape Modeling: Geographic Information Technologies and Pedometrics , 2007 .

[41]  Florian Pappenberger,et al.  Sensitivity analysis based on regional splits and regression trees (SARS-RT) , 2006, Environ. Model. Softw..

[42]  Estelle Russek-Cohen,et al.  Use of Maryland Biological Stream Survey Data to Determine Effects of Agricultural Riparian Buffers on Measures of Biological Stream Health , 2006, Environmental monitoring and assessment.

[43]  J. D. Stuck,et al.  Sediment Inventory and Phosphorus Fractions for Water Conservation Area Canals in the Everglades , 2006 .

[44]  S. Grunwald,et al.  Recent Changes in Soil Total Phosphorus in the Everglades: Water Conservation Area 3 , 2007, Environmental monitoring and assessment.

[45]  David J. Brown Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order Uganda watershed , 2007 .

[46]  S. Grunwald,et al.  Water Conservation Area 2 , Everglades , Florida , USA , 2008 .

[47]  Walter J. Rawls,et al.  Probabilistic Approach to the Identification of Input Variables to Estimate Hydraulic Conductivity , 2008 .

[48]  H. Elsenbeer,et al.  Soil organic carbon concentrations and stocks on Barro Colorado Island — Digital soil mapping using Random Forests analysis , 2008 .

[49]  Big Land Purchase Triggers Review of Plans to Restore Everglades , 2008, Science.

[50]  Sabine Grunwald,et al.  Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra , 2008 .

[51]  Dominique Arrouays,et al.  Extrapolating regional soil landscapes from an existing soil map: Sampling intensity, validation procedures, and integration of spatial context , 2008 .

[52]  S. Grunwald,et al.  Long-term water quality trends after implementing best management practices in South Florida. , 2009, Journal of environmental quality.