Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide.

The ability to control chromatic dispersion is paramount in applications where the optical pulsewidth is critical, such as chirped pulse amplification and fiber optic communications. Typically, devices used to generate large amounts (>100 ps/nm) of chromatic dispersion are based on diffraction gratings, chirped fiber Bragg gratings, or dispersion compensating fiber. Unfortunately, these dispersive elements suffer from one or more of the following restrictions: (i) limited operational bandwidth, (ii) limited total dispersion, (iii) low peak power handling, or (iv) large spatial footprint. Here, we introduce a new type of tunable dispersive device, which overcomes these limitations by leveraging the large modal dispersion of a multimode waveguide in combination with the angular dispersion of diffraction gratings to create chromatic dispersion. We characterize the device's dispersion, and demonstrate its ability to stretch a sub-picosecond optical pulse to nearly 2 nanoseconds in 20 meters of multimode optical fiber. Using this device, we also demonstrate single-shot, time-wavelength atomic absorption spectroscopy at a repetition rate of 90.8 MHz.

[1]  Oscar E. Martínez,et al.  3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region , 1987 .

[2]  K. Goda,et al.  High-speed nanometer-resolved imaging vibrometer and velocimeter , 2011 .

[3]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[4]  D Decker,et al.  High-efficiency multilayer dielectric diffraction gratings. , 1995, Optics letters.

[5]  M. D. Shirk,et al.  A review of ultrashort pulsed laser ablation of materials , 1998 .

[6]  A. S. Bhushan,et al.  Time-domain optical sensing , 1999 .

[7]  W. B. Jones Introduction to optical fiber communication systems , 1988 .

[8]  William J. Caputi,et al.  Stretch: A Time-Transformation Technique , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[9]  B. Kolner Space-time duality and the theory of temporal imaging , 1994 .

[10]  Bahram Jalali,et al.  Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations , 2003 .

[11]  D. Gloge,et al.  Optical power flow in multimode fibers , 1972 .

[12]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[13]  B. Kolner,et al.  Upconversion time microscope demonstrating 103 x magnification of femtosecond waveforms. , 1999, Optics letters.

[14]  D N Payne,et al.  Mode conversion coefficients in optical fibers. , 1975, Applied optics.

[15]  Ahmed H. Zewail,et al.  Femtochemistry: Atomic-Scale Dynamics of the Chemical Bond† , 2000 .

[16]  Andrew C. Singer,et al.  Electronic dispersion compensation , 2008, IEEE Signal Processing Magazine.

[17]  G. Mourou,et al.  Terawatt to Petawatt Subpicosecond Lasers , 1994, Science.

[18]  B. Jalali,et al.  Amplified wavelength–time transformation for real-time spectroscopy , 2008 .

[19]  J. Chou,et al.  Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation , 2008 .

[20]  E. Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[21]  K. Goda,et al.  Theory of amplified dispersive Fourier transformation , 2009 .

[22]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[23]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[24]  Almantas Galvanauskas,et al.  Mode-scalable fiber-based chirped pulse amplification systems , 2001 .

[25]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[26]  L. Goldberg,et al.  Single-mode operation of a coiled multimode fiber amplifier. , 2000, Optics letters.

[27]  A. S. Bhushan,et al.  Photonic time stretch and its application to analog-to-digital conversion , 1999 .

[28]  B. Jalali,et al.  Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena , 2009, Nature.

[29]  S. Savory,et al.  Electronic compensation of chromatic dispersion using a digital coherent receiver. , 2007, Optics express.

[30]  J. Kahn,et al.  Digital Equalization of Chromatic Dispersion and Polarization Mode Dispersion , 2007, Journal of Lightwave Technology.

[31]  F. Hartemann,et al.  Chirped-pulse amplification with narrowband pulses. , 2010, Optics Letters.

[32]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[33]  Dennis Derickson,et al.  Fiber optic test and measurement , 1998 .

[34]  J. Joannopoulos,et al.  Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission , 2002, Nature.

[35]  Almantas Galvanauskas,et al.  Effectively Single-Mode Chirally-Coupled Core Fiber , 2007 .

[36]  Bahram Jalali,et al.  Optical phase recovery in the dispersive Fourier transform , 2009 .

[37]  E. Treacy Optical pulse compression with diffraction gratings , 1969 .