Network Models with Unsplittable Node Flows with Application to Unit Train Scheduling

Network models for unit train scheduling contain the challenging combinatorial requirement that the incoming and outgoing flow of selected nodes cannot be split or merged. In “Network Models with U...

[1]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[2]  Laurence A. Wolsey,et al.  Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..

[3]  Julong Lan,et al.  An Algorithm for Unsplittable Flow Problem in Flexible Reconfigurable Network , 2009, 2009 Fourth International Conference on Frontier of Computer Science and Technology.

[4]  Juan Pablo Vielma,et al.  Mixed Integer Linear Programming Formulation Techniques , 2015, SIAM Rev..

[5]  Martin W. P. Savelsbergh,et al.  Lifted flow cover inequalities for mixed 0-1 integer programs , 1999, Math. Program..

[6]  Egon Balas Disjunctive Programming , 2010, 50 Years of Integer Programming.

[7]  G. Ziegler Lectures on Polytopes , 1994 .

[8]  Oktay Günlük,et al.  A branch-and-cut algorithm for capacitated network design problems , 1999, Math. Program..

[9]  Francisco Barahona,et al.  Network Design Using Cut Inequalities , 1996, SIAM J. Optim..

[10]  Laurence A. Wolsey,et al.  A branch-and-cut algorithm for the single-commodity, uncapacitated, fixed-charge network flow problem , 2003, Networks.

[11]  Jean-Philippe P. Richard,et al.  A Two-Model Solution Approach for the Monthly Coal Train Reservations Planning Problem , 2016, Transp. Sci..

[12]  Jon M. Kleinberg,et al.  Approximation algorithms for disjoint paths problems , 1996 .

[13]  Ravindra K. Ahuja,et al.  Network Models in Railroad Planning and Scheduling , 2005 .

[14]  Martin Skutella,et al.  The k-Splittable Flow Problem , 2005, Algorithmica.

[15]  Arie M. C. A. Koster,et al.  On cut‐based inequalities for capacitated network design polyhedra , 2011, Networks.

[16]  Alper Atamtürk,et al.  On capacitated network design cut–set polyhedra , 2002, Math. Program..

[17]  Mervat Chouman,et al.  Cutting-Plane Matheuristic for Service Network Design with Design-Balanced Requirements , 2015, Transp. Sci..

[18]  Michael F. Gorman,et al.  Operations Research Approaches to Asset Management in Freight Rail , 2011 .

[19]  Valentina Cacchiani,et al.  Models and algorithms for combinatorial optimization problems arising in railway applications , 2009, 4OR.

[20]  Jean-Philippe P. Richard,et al.  A time–space scheduling model for optimizing recurring bulk railcar deliveries , 2008 .

[21]  Laurence A. Wolsey,et al.  Valid inequalities for mixed 0-1 programs , 1986, Discret. Appl. Math..

[22]  Ravindra K. Ahuja,et al.  OR Models in Freight Railroad Industry , 2011 .

[23]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[24]  Paolo Toth,et al.  A Survey of Optimization Models for Train Routing and Scheduling , 1998, Transp. Sci..

[25]  Erhan Kozan,et al.  Optimising a coal rail network under capacity constraints , 2011 .

[26]  Christian Scheideler,et al.  Improved bounds for the unsplittable flow problem , 2002, SODA '02.

[27]  Jacques Desrosiers,et al.  A Branch-First, Cut-Second Approach for Locomotive Assignment , 1998 .

[28]  Michel X. Goemans,et al.  On the Single-Source Unsplittable Flow Problem , 1999, Comb..

[29]  Alper Atamtürk,et al.  On splittable and unsplittable flow capacitated network design arc–set polyhedra , 2002, Math. Program..

[30]  Oktay Günlük,et al.  Minimum cost capacity installation for multicommodity network flows , 1998, Math. Program..

[31]  Jean-Philippe P. Richard Lifting Techniques For Mixed Integer Programming , 2011 .

[32]  Jacques Desrosiers,et al.  On the choice of explicit stabilizing terms in column generation , 2007, Discret. Appl. Math..