Learning Fuzzy Classifiers with Evolutionary Algorithms

This paper illustrates an evolutionary algorithm, which learns classifiers, represented as sets of fuzzy rules, from a data set containing past experimental observations of a phenomenon. The approach is applied to a benchmark dataset made available by the machine learning community.

[1]  Kevin Baker,et al.  Classification of radar returns from the ionosphere using neural networks , 1989 .

[2]  Philip R. Thrift,et al.  Fuzzy Logic Synthesis with Genetic Algorithms , 1991, ICGA.

[3]  M.A. Lee,et al.  Integrating design stage of fuzzy systems using genetic algorithms , 1993, [Proceedings 1993] Second IEEE International Conference on Fuzzy Systems.

[4]  David W. Aha,et al.  Noise-Tolerant Instance-Based Learning Algorithms , 1989, IJCAI.

[5]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[6]  Charles L. Karr,et al.  Genetic algorithms for fuzzy controllers , 1991 .

[7]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[8]  Cezary Z. Janikow,et al.  A genetic algorithm for learning fuzzy controllers , 1994, SAC '94.

[9]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[10]  H. Takagi,et al.  Integrating Design Stages of Fuzzy Systems using Genetic Algorithms 1 , 1993 .

[11]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[12]  Andrea G. B. Tettamanzi An evolutionary algorithm for fuzzy controller synthesis and optimization , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[13]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .