The use of environmental markers to distinguish marine vs. continental deposition and to quantify the significance of recycling in evaporite basins

Abstract Environmental markers, namely the bromine content of halite samples, the electrolyte content of primary fluid inclusions in halite and the isotopic composition of sulphates from two Tertiary evaporite sequences, provide complementary information on the depositional environment (marine vs. continental). The use of these markers, together with lithofacies and thicknesses of precipitated evaporites, enable the detection and quantification of evaporite recycling within evaporite basins. The information provided by the isolated use of each of these geochemical markers should be used with caution, as this could lead to erroneous interpretations of the depositional environment or may not detect significant evaporite recycling processes. The complementary information provided by geochemical markers enable quantification of solute input from recycling of previous precipitates within the basins themselves or from older evaporites. The input of recycled evaporites increases progressively, together with evaporite basin restriction to the open ocean.

[1]  T. Peryt,et al.  Association of redeposited salt breccias and potash evaporites in the lower Miocene of Stebnyk (Carpathian Foredeep, West Ukraine) , 1997 .

[2]  H. Sakai,et al.  The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation , 1980 .

[3]  J. Pueyo,et al.  Oxygen and sulphur isotope compositions as indicators of the origin of Mesozoic and Cenozoic evaporites from Spain , 1992 .

[4]  R. C. Murray,et al.  Principles of lithogenesis , 1967 .

[5]  B. Schreiber,et al.  Sedimentary deposition in rift and foreland basins in France and Spain (Paleogene and lower Neogene) , 1997 .

[6]  F. Mondéjar,et al.  Historia geológica de la cuenca de Lorca (Murcia):: influencia de la tectónica en la sedimentación. , 1995 .

[7]  B. Lazar,et al.  The composition of Permian seawater. , 1991, Geochimica et cosmochimica acta.

[8]  C. Galdeano,et al.  Geologic evolution of the Betic Cordilleras in the Western Mediterranean, Miocene to the present , 1990 .

[9]  R. Moretto Étude sédimentologique et géochimique des dépôts de la série salifère paléogène du bassin de Bourg-en-Bresse (France) , 1986 .

[10]  F. Cabo,et al.  Composición isotópica de los yesos Messinienses de la cuenca de Fortuna (Murcia):: implicaciones sedimentológicas. , 1995 .

[11]  J. Pueyo,et al.  Composición de las inclusiones fluidas en la halita del sondeo Biurrún (cuenca Potásica de Navarra) , 2018 .

[12]  R. E. Denison,et al.  Variation of seawater 87Sr/86Sr throughout Phanerozoic time , 1982 .

[13]  T. Peryt,et al.  Earthquake‐induced resedimentation in the Badenian (middle Miocene) gypsum of southern Poland , 1992 .

[14]  Gregory J. Wolff,et al.  Sedimentary and diagenetic markers of the restriction in a marine basin: the Lorca basin (SE Spain) , 1998 .

[15]  R. Kühn Geochemistry of the German Potash Deposits , 1968 .

[16]  H. Borchert,et al.  Salt deposits : the origin, metamorphism and deformation of evaporites , 1964 .

[17]  P. Aruscavage,et al.  Composition of fluid inclusions in Permian salt beds, Palo Duro Basin, Texas, U.S.A. , 1987 .

[18]  A. Longinelli Isotope geochemistry of some Messinian evaporates: Paleoenvironmental implications , 1979 .

[19]  F. Cabo,et al.  Caracterización petrológica y geoquímica de la Unidad Salina messiniense de la cuenca de Lorca (sondeos S4 y S5). , 1993 .

[20]  C. Montenat,et al.  Originalité géodynamique des bassins néogènes du domaine bétique oriental (Espagne) , 1987 .

[21]  H. Craig,et al.  Oxygen-18 Variations in Sulfate Ions in Sea Water and Saline Lakes , 1967, Science.

[22]  C. Ayora,et al.  X-ray microanalysis of frozen fluid inclusions , 1990 .

[23]  W. T. Holser,et al.  Isotope geochemistry of sedimentary sulfates , 1966 .

[24]  M. Jasionowski,et al.  In situ formed and redeposited gypsum breccias in the Middle Miocene Badenian of southern Poland , 1994 .

[25]  C. Sevilla,et al.  Evolución geoquímica de cuencas evaporíticas terciarias: implicaciones en la composición isotópica disuelto en el océano durante el terciario , 1999 .

[26]  O. Braitsch Salt Deposits Their Origin and Composition , 1971 .

[27]  B. Lazar,et al.  Evolution of the atmosphere and oceans , 1986, Nature.

[28]  J. Gaudant,et al.  Origine continentale des evaporites paleogenes de Haute Alsace; arguments paleoecologiques, sedimentologiques et isotopiques , 1991 .

[29]  C. Ayora,et al.  Modeling the sulfur and oxygen isotopic composition of sulfates through a halite-potash sequence: Implications for the hydrological evolution of the Upper Eocene Southpyrenean Basin , 1995 .

[30]  A. Ślączka,et al.  Resedimented Salt Deposits: ABSTRACT , 1988 .

[31]  R. Moretto Observations on the incorporation of trace elements in halite of Oligocene salt beds, Bourg-en-Bresse Basin, France , 1988 .

[32]  W. W. Wood,et al.  Brine evolution and mineral deposition in hydrologically open evaporite basins , 1991 .

[33]  C. Ayora Refining the δ34S and δ18O Values of Sulphate in Ancient Oceans , 1994 .

[34]  J. Gat,et al.  The Dead Sea: The Lake and Its Setting , 1999 .

[35]  C. Ayora,et al.  X-ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins , 1994 .

[36]  D. Müller,et al.  Origin and age of the Mediterranean Messinian evaporites : implications from Sr isotopes , 1991 .

[37]  M. Coleman,et al.  Source of sulphur in the Ebro Basin (northern Spain) Tertiary nonmarine evaporite deposits as evidenced by sulphur isotopes , 1979 .

[38]  O. Braitsch,et al.  Zur Geochemie des Broms in salinaren Sedimenten: Teil I: Experimentelle Bestimmung der Br-Verteilung in verschiedenen natürlichen Salzsystemen , 1963 .

[39]  Walther Lob Untersuchungen über die Bildungsverhältnisse der ozeanischen Salzablagerungen, insbesondere des Staßfurter Salzlagers. J. H. van 't Hoff: Herausgegeben von H. Precht‐Neustaßfurt und Ernst Cohen‐Utrecht. 374 Seiten. Akademische Verlagsgesellschaft m. b. H. Preis 16 Mk. , 1912 .

[40]  John P. Platt,et al.  Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc , 1989 .

[41]  L. Hardie The roles of rifting and hydrothermal CaCl 2 brines in the origin of potash evaporites; an hypothesis , 1990 .

[42]  E. Pous Les evaporites de les conques betiques marginals (fortuna-lorca, mioce superior): comparacio amb altres conques mediterranies , 1998 .

[43]  P. Souquet,et al.  Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees , 1986 .

[44]  F. Cabo,et al.  La halite du bassin potassique sud-pyreneen (Eocene superieur, Espagne) , 1985 .

[45]  J. Veizer,et al.  87Sr/86Sr composition of seawater during the Phanerozoic , 1974 .

[46]  N. Beukes,et al.  A paleoweathering profile from Griqualand West, South Africa: evidence for a dramatic rise in atmospheric oxygen between 2.2 and 1.9 bybp. , 1990, American journal of science.

[47]  C. Ayora,et al.  The chemical and hydrological evolution of an ancient potash-forming evaporite basin as constrained by mineral sequence, fluid inclusion composition, and numerical simulation , 1994 .

[48]  C. Pierre Isotopic evidence for the dynamic redox cycle of dissolved sulphur compounds between free and interstitial solutions in marine salt pans , 1985 .