Some experimental issues of AFM tip blind estimation: the effect of noise and resolution

The convolution of tip shape on sample topography can introduce significant inaccuracy in an AFM image, when the tip radius is comparable to the typical dimension of the sample features to be observed. The blind estimation method allows one to obtain information on the AFM tip through an unknown characterizer sample and thus to perform the deconvolution of the tip shape from an image. When applying the blind estimation method to determine the AFM tip shape, some apparently trivial issues relating to the experimental operating parameters must be taken into account. In this paper, the effects of the operating parameters, e.g., sampling intervals (resolution) and instrumental noise, have been taken into account for the practical use of blind estimation and the result is that instrumental noise tends to provide a smaller estimation of the tip size, while larger sampling intervals provide a larger value of it. This paper presents guidelines to those effects in AFM and appropriate experimental conditions for applying the blind estimation method to obtain more reliable data on tip radius and therefore on sample topography.

[1]  Kathy L. Rowlen,et al.  Tip Characterization from AFM Images of Nanometric Spherical Particles , 1998 .

[2]  C. Madden,et al.  Towards nanoscale metrology for biomolecular imaging by atomic force microscopy , 2005 .

[3]  J. Villarrubia Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation , 1997, Journal of research of the National Institute of Standards and Technology.

[4]  Alfons Baiker,et al.  Direct imaging of the tip shape by AFM , 1995 .

[5]  Kevin M. Shakesheff,et al.  Blind reconstruction of scanning probe image data , 1996 .

[6]  J. Revel,et al.  Examination of Atomic (Scanning) Force Microscopy Probe Tips with the Transmission Electron Microscope , 1997, Microscopy and Microanalysis.

[7]  C. Bustamante,et al.  Circular DNA molecules imaged in air by scanning force microscopy. , 1992, Biochemistry.

[8]  Wen-Ling Shaiu,et al.  Atomic force microscopy of oriented linear DNA molecules labeled with 5nm gold spheres , 1993, Nucleic Acids Res..

[9]  Wenhao Huang,et al.  Numerical simulation of the geometrical factors affecting surface roughness measurements by AFM , 2004 .

[10]  T. D. Yuzvinsky,et al.  Length control and sharpening of atomic force microscope carbon nanotube tips assisted by an electron beam , 2005 .

[11]  Jing Fang,et al.  Nanoscale in-plane displacement evaluation by AFM scanning and digital image correlation processing , 2005 .

[12]  Ramesh Jain,et al.  Computational model of the imaging process in scanning-x microscopy , 1991, Other Conferences.

[13]  J S Bunch,et al.  Noncontact-AFM imaging of molecular surfaces using single-wall carbon nanotube technology , 2004 .

[14]  M. Marth,et al.  A unifying view on some experimental effects in tapping-mode atomic force microscopy , 1999 .

[15]  Cristina Siegerist,et al.  Scanning force microscopy of circular DNA and chromatin in air and propanol , 1992, Photonics West - Lasers and Applications in Science and Engineering.

[16]  R. Emch,et al.  Scanning force microscopy and cryo-electron microscopy of tobacco mosaic virus as a test specimen. , 1992, Ultramicroscopy.

[17]  S. Piccarolo,et al.  Relating morphology to nanoscale mechanical properties: from crystalline to mesomorphic iPP , 2005 .

[18]  Douglas J. Thomson,et al.  Tip artifacts in atomic force microscope imaging of thin film surfaces , 1993 .

[19]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[20]  Michael T. Postek,et al.  Experimental test of blind tip reconstruction for scanning probe microscopy , 2000 .

[21]  Günter Reiss,et al.  Scanning tunneling microscopy on rough surfaces: Deconvolution of constant current images , 1990 .

[22]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[23]  S. Piccarolo,et al.  On the Use of the Nanoindentation Unloading Curve to Measure the Young's Modulus of Polymers on a Nanometer Scale , 2005 .

[24]  Eugene A. Irene,et al.  Imaging and modification of Au(111) monatomic steps with atomic force microscopy , 1993 .

[25]  Ricardo Garcia,et al.  Dynamics of a vibrating tip near or in intermittent contact with a surface , 2000 .

[26]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[27]  J. Pang,et al.  AFM image reconstruction for deformation measurements by digital image correlation , 2006, Nanotechnology.

[28]  D. Keller Reconstruction of STM and AFM images distorted by finite-size tips , 1991 .

[29]  Noël Bonnet,et al.  Blind restoration method of scanning tunneling and atomic force microscopy images , 1996 .

[30]  C. Odin,et al.  Tip's finite size effects on atomic force microscopy in the contact mode: simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex balls , 1994 .

[31]  J. Villarrubia Scanned probe microscope tip characterization without calibrated tip characterizers , 1996 .

[32]  S. Piccarolo,et al.  Nanoscale Mechanical Characterization of Polymers by AFM Nanoindentations: Critical Approach to the Elastic Characterization , 2006 .

[33]  Hugh A. Bruck,et al.  A new method for characterizing nonlinearity in scanning probe microscopes using digital image correlation , 2005 .

[34]  Fransiska S. Franke,et al.  Envelope reconstruction of probe microscope images , 1993 .

[35]  Fredy R. Zypman,et al.  Probing the resolution limits and tip interactions of atomic force microscopy in the study of globular proteins , 1993 .

[36]  M. Arnsdorf,et al.  Calibration of the scanning (atomic) force microscope with gold particles , 1994, Journal of microscopy.

[37]  Ricardo Garcia,et al.  Dynamic atomic force microscopy methods , 2002 .

[38]  David L. Wilson,et al.  Morphological restoration of atomic force microscopy images , 1995 .

[39]  J. Villarrubia Morphological estimation of tip geometry for scanned probe microscopy , 1994 .

[40]  J. Vesenka,et al.  Three‐dimensional probe reconstruction for atomic force microscopy , 1994 .

[41]  Gopal Sarma Pingali,et al.  Surface recovery in scanning probe microscopy , 1992, Other Conferences.

[42]  Matthew J. Hagon,et al.  Measuring tip shape for instrumented indentation using atomic force microscopy , 2005 .

[43]  P. Markiewicz,et al.  Atomic force microscopy probe tip visualization and improvement of images using a simple deconvolution procedure , 1994 .