Estimation error guarantees for Poisson denoising with sparse and structured dictionary models

Poisson processes are commonly used models for describing discrete arrival phenomena arising, for example, in photon-limited scenarios in low-light and infrared imaging, astronomy, and nuclear medicine applications. In this context, several recent efforts have evaluated Poisson denoising methods that utilize contemporary sparse modeling and dictionary learning techniques designed to exploit and leverage (local) shared structure in the images being estimated. This paper establishes a theoretical foundation for such procedures. Specifically, we formulate sparse and structured dictionary-based Poisson denoising methods as constrained maximum likelihood estimation strategies, and establish performance bounds for their mean-square estimation error using the framework of complexity penalized maximum likelihood analyses.

[1]  Andrew R. Barron,et al.  Minimum complexity density estimation , 1991, IEEE Trans. Inf. Theory.

[2]  Charles W. Therrien,et al.  Probability and Random Processes for Electrical and Computer Engineers , 2011 .

[3]  Jian Yu,et al.  A Dictionary Learning Approach for Poisson Image Deblurring , 2013, IEEE Transactions on Medical Imaging.

[4]  Robert D. Nowak,et al.  Wavelet-domain filtering for photon imaging systems , 1999, IEEE Trans. Image Process..

[5]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[6]  Robert D. Nowak,et al.  Signal Reconstruction From Noisy Random Projections , 2006, IEEE Transactions on Information Theory.

[7]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[8]  Y. Vardi,et al.  Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data , 1996 .

[9]  A. Barron,et al.  Estimation of mixture models , 1999 .

[10]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[11]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[12]  Tong Zhang,et al.  On the Convergence of MDL Density Estimation , 2004, COLT.

[13]  Guillermo Sapiro,et al.  Online dictionary learning for sparse coding , 2009, ICML '09.

[14]  R. Nowak,et al.  Multiscale likelihood analysis and complexity penalized estimation , 2004, math/0406424.

[15]  Mohamed-Jalal Fadili,et al.  A Proximal Iteration for Deconvolving Poisson Noisy Images Using Sparse Representations , 2008, IEEE Transactions on Image Processing.

[16]  Geoffrey J. Gordon,et al.  A Unified View of Matrix Factorization Models , 2008, ECML/PKDD.

[17]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[18]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[19]  Andrew R. Barron,et al.  Mixture Density Estimation , 1999, NIPS.

[20]  Andrew R. Barron,et al.  Complexity Regularization with Application to Artificial Neural Networks , 1991 .

[21]  Rebecca Willett,et al.  This is SPIRAL-TAP: Sparse Poisson Intensity Reconstruction ALgorithms—Theory and Practice , 2010, IEEE Transactions on Image Processing.

[22]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[23]  Pierre Chainais Towards dictionary learning from images with non Gaussian noise , 2012, 2012 IEEE International Workshop on Machine Learning for Signal Processing.

[24]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[25]  Laure Blanc-Féraud,et al.  Sparse Poisson Noisy Image Deblurring , 2012, IEEE Transactions on Image Processing.

[26]  Robert D. Nowak,et al.  Multiscale Modeling and Estimation of Poisson Processes with Application to Photon-Limited Imaging , 1999, IEEE Trans. Inf. Theory.

[27]  Sanjoy Dasgupta,et al.  A Generalization of Principal Components Analysis to the Exponential Family , 2001, NIPS.

[28]  Michael Elad,et al.  Sparsity-Based Poisson Denoising With Dictionary Learning , 2013, IEEE Transactions on Image Processing.

[29]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[30]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[31]  Rebecca Willett,et al.  Poisson Noise Reduction with Non-local PCA , 2012, Journal of Mathematical Imaging and Vision.

[32]  Roummel F. Marcia,et al.  Compressed Sensing Performance Bounds Under Poisson Noise , 2009, IEEE Transactions on Signal Processing.

[33]  P. Massart,et al.  Risk bounds for model selection via penalization , 1999 .