On Some NCP-Functions Based on the Generalized Fischer-burmeister Function

In this paper, we study several NCP-functions for the nonlinear complementarity problem (NCP) which are indeed based on the generalized Fischer–Burmeister function, ϕp(a, b) = ||(a, b)||p - (a + b). It is well known that the NCP can be reformulated as an equivalent unconstrained minimization by means of merit functions involving NCP-functions. Thus, we aim to investigate some important properties of these NCP-functions that will be used in solving and analyzing the reformulation of the NCP.

[1]  M. Fukushima,et al.  A New Derivative-Free Descent Method for the Nonlinear Complementarity Problem , 2000 .

[2]  K. G. Murty,et al.  Complementarity problems , 2000 .

[3]  Liqun Qi,et al.  Superlinearly convergent approximate Newton methods for LC1 optimization problems , 1994, Math. Program..

[4]  Patrick T. Harker,et al.  Smooth Approximations to Nonlinear Complementarity Problems , 1997, SIAM J. Optim..

[5]  M. Fukushima,et al.  New NCP-Functions and Their Properties , 1997 .

[6]  A. Fischer A special newton-type optimization method , 1992 .

[7]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[8]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[9]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[10]  Francisco Facchinei,et al.  A New Merit Function For Nonlinear Complementarity Problems And A Related Algorithm , 1997, SIAM J. Optim..

[11]  O. Mangasarian Equivalence of the Complementarity Problem to a System of Nonlinear Equations , 1976 .

[12]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[13]  Jein-Shan Chen,et al.  The Semismooth-Related Properties of a Merit Function and a Descent Method for the Nonlinear Complementarity Problem , 2006, J. Glob. Optim..

[14]  R. Mifflin Semismooth and Semiconvex Functions in Constrained Optimization , 1977 .

[15]  C. Kanzow Nonlinear complementarity as unconstrained optimization , 1996 .

[16]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[17]  C. Kanzow,et al.  A Penalized Fischer-Burmeister Ncp-Function: Theoretical Investigation And Numerical Results , 1997 .

[18]  Christian Kanzow,et al.  On the resolution of monotone complementarity problems , 1996, Comput. Optim. Appl..

[19]  Jein-Shan Chen,et al.  A family of NCP functions and a descent method for the nonlinear complementarity problem , 2008, Comput. Optim. Appl..

[20]  Defeng Sun,et al.  On NCP-Functions , 1999, Comput. Optim. Appl..

[21]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[22]  Xiaojun Chen,et al.  A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..

[23]  Helmut Kleinmichel,et al.  A New Class of Semismooth Newton-Type Methods for Nonlinear Complementarity Problems , 1998, Comput. Optim. Appl..

[24]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[25]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[26]  Francisco Facchinei,et al.  A semismooth equation approach to the solution of nonlinear complementarity problems , 1996, Math. Program..

[27]  P. Tseng Growth behavior of a class of merit functions for the nonlinear complementarity problem , 1996 .

[28]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[29]  G. Isac Complementarity Problems , 1992 .