Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale

Application of the twelve principles of green chemistry can deliver higher efficiency and reduce the environmental burden during chemical synthesis. As a result of recent advances in genomics, proteomics and pathway engineering, biocatalysis is emerging as one of the greenest technologies. Enzymes are highly efficient with excellent regioselectivity and stereoselectivity. By conducting reactions in water under ambient reaction conditions, both the use of organic solvents and energy input are minimized.

[1]  A. McPhail,et al.  Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. , 1971, Journal of the American Chemical Society.

[2]  M. Kuznetsova,et al.  Immobilization of Rhodococcus ruber strain gt1, possessing nitrile hydratase activity, on carbon supports , 2007, Applied Biochemistry and Microbiology.

[3]  T. Foderaro,et al.  Research and Development of a Second-Generation Process for Oseltamivir Phosphate, Prodrug for a Neuraminidase Inhibitor , 2004 .

[4]  Ajay Kumar,et al.  Versatile Route to Polyol Polyesters by Lipase Catalysis , 2003 .

[5]  J. W. Frost,et al.  Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis. , 2005, Journal of the American Chemical Society.

[6]  J. Stubbe,et al.  Polyhydroxyalkanoate (PHA) homeostasis: the role of the PHA synthase , 2003 .

[7]  R. Sheldon CATALYSIS AND POLLUTION PREVENTION , 1997 .

[8]  Paul T Anastas,et al.  Green chemistry: science and politics of change. , 2002, Science.

[9]  M. Burk,et al.  Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). , 2003, Journal of the American Chemical Society.

[10]  Roel Bovenberg,et al.  Metabolic engineering for microbial production of shikimic acid. , 2003, Metabolic engineering.

[11]  T. M. Keenan,et al.  Polyhydroxyalkanoate copolymers from forest biomass , 2006, Journal of Industrial Microbiology and Biotechnology.

[12]  Ryoji Noyori,et al.  Pursuing practical elegance in chemical synthesis. , 2005, Chemical communications.

[13]  Y. Poirier,et al.  Polymers of 3-hydroxyacids in plants , 2004, Phytochemistry Reviews.

[14]  Alexander Varvak,et al.  Development of an efficient, scalable, aldolase-catalyzed process for enantioselective synthesis of statin intermediates. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Gross,et al.  Candida antarctica Lipase B-Catalyzed Transesterification: New Synthetic Routes to Copolyesters , 2000 .

[16]  A. Zeng,et al.  Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. , 2002, Advances in biochemical engineering/biotechnology.

[17]  J. R. Frank,et al.  Technological and economic potential of poly(lactic acid) and lactic acid derivatives , 1995 .

[18]  R. Patel,et al.  Tour de paclitaxel: biocatalysis for semisynthesis. , 1998, Annual review of microbiology.

[19]  J. W. Frost,et al.  Synthesis of aminoshikimic acid. , 2004, Organic letters.

[20]  J. S. Carey,et al.  Analysis of the reactions used for the preparation of drug candidate molecules. , 2006, Organic & biomolecular chemistry.

[21]  Y. Doi Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates , 1995 .

[22]  R. Gross,et al.  Polymer synthesis by in vitro enzyme catalysis. , 2001, Chemical reviews.

[23]  Jay D Keasling,et al.  Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates. , 2003, Current opinion in biotechnology.

[24]  Wong,et al.  The Catalytic Asymmetric Aldol Reaction. , 2000, Angewandte Chemie.

[25]  William Stafford,et al.  Metagenomic gene discovery: past, present and future. , 2005, Trends in biotechnology.

[26]  S Furusaki,et al.  Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidata. , 1997, Biotechnology and bioengineering.

[27]  R. Mathew,et al.  Trifluoroacetic Acid-Mediated Cleavage of a Triethylsilyl Protecting Group: Application in the Final Step of the Semisynthetic Route to Paclitaxel (Taxol) , 2003 .

[28]  K. Snell,et al.  Polyhydroxyalkanoate polymers and their production in transgenic plants. , 2002, Metabolic engineering.

[29]  Roger A. Sheldon,et al.  CONSIDER THE ENVIRONMENTAL QUOTIENT , 1994 .

[30]  J. W. Frost,et al.  Environmentally compatible synthesis of catechol from D-glucose , 1995 .

[31]  M. Hoekstra,et al.  Chemical Development of CI-1008, an Enantiomerically Pure Anticonvulsant , 1997 .

[32]  C. Nakamura,et al.  Metabolic engineering for the microbial production of 1,3-propanediol. , 2003, Current opinion in biotechnology.

[33]  Daniel Mink,et al.  Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase. , 2006, Biotechnology journal.

[34]  C. De Micheli,et al.  A SIMPLE AND EFFICIENT SYNTHESIS OF GYKI 52466 AND GYKI 52895 , 2002 .

[35]  Andreas Schmid,et al.  The production of fine chemicals by biotransformations. , 2002, Current opinion in biotechnology.

[36]  Y. Yukimune,et al.  Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures , 1996, Nature Biotechnology.

[37]  James H. Clark,et al.  Handbook of Green Chemistry and Technology , 2002 .

[38]  Christian C. Gruber,et al.  Non‐Racemic Halohydrins via Biocatalytic Hydrogen‐Transfer Reduction of Halo‐Ketones and One‐Pot Cascade Reaction to Enantiopure Epoxides , 2005 .

[39]  Jian-Jiang Zhong,et al.  Plant cell culture for production of paclitaxel and other taxanes. , 2002, Journal of bioscience and bioengineering.

[40]  M. Karpf,et al.  New, azide-free transformation of epoxides into 1,2-diamino compounds: synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). , 2001, The Journal of organic chemistry.

[41]  M. Zmijewski,et al.  Application of a Practical Biocatalytic Reduction to an Enantioselective Synthesis of the 5H-2,3-Benzodiazepine LY300164 , 1995 .

[42]  G. Abraham,et al.  Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. , 2001, Environmental microbiology.

[43]  S. Lee,et al.  Factors affecting the economics of polyhydroxyalkanoate production by bacterial fermentation , 1999, Applied Microbiology and Biotechnology.

[44]  M. Kanai,et al.  De novo synthesis of Tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3. , 2006, Journal of the American Chemical Society.

[45]  J. W. Frost,et al.  Benzene‐Free Synthesis of Adipic Acid , 2002, Biotechnology progress.

[46]  M. Beller,et al.  A general method for the enantioselective hydrogenation of β-keto esters using monodentate binaphthophosphepine ligands , 2005 .

[47]  Donald Garlotta,et al.  A Literature Review of Poly(Lactic Acid) , 2001 .

[48]  E. Neidle,et al.  Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli , 1986, Journal of bacteriology.

[49]  Alle Bruggink,et al.  Penicillin Acylase in the Industrial Production of β-Lactam Antibiotics , 1998 .

[50]  Ralph Von Daeniken,et al.  Phosphoenolpyruvate Availability and the Biosynthesis of Shikimic Acid , 2003, Biotechnology progress.

[51]  D. Kaplan,et al.  Enzyme-Catalyzed Ring-Opening Polymerization of ω-Pentadecalactone† , 1997 .

[52]  A. Steinbüchel,et al.  Diversity of bacterial polyhydroxyalkanoic acids , 1995 .

[53]  M. Payne,et al.  Production of Acrylamide using Alginate‐Immobilized E. coli Expressing Comamonas testosteroni 5‐MGAM‐4D Nitrile Hydratase , 2005 .

[54]  Russell Hitchings,et al.  Keep it green , 2006 .

[55]  A. Sinskey,et al.  Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. , 2005, Annual review of biochemistry.

[56]  V. Gewin Chemistry's evolution , 2006 .

[57]  Tomas Hudlicky,et al.  Toward a ‘reagent-free’ synthesis , 1999 .

[58]  R. Gross,et al.  Polyester and polycarbonate synthesis by in vitro enzyme catalysis , 2001, Applied Microbiology and Biotechnology.

[59]  L. Poppe,et al.  Stereoselective production of (S)-1-aralkyl- and 1-arylethanols by freshly harvested and lyophilized yeast cells , 2006 .

[60]  P. Anastas,et al.  Green Chemistry , 2018, Environmental Science.

[61]  H. Yamada,et al.  Nitrile hydratase and its application to industrial production of acrylamide. , 1996, Bioscience, biotechnology, and biochemistry.

[62]  John Andraos,et al.  Unification of Reaction Metrics for Green Chemistry II: Evaluation of Named Organic Reactions and Application to Reaction Discovery , 2005 .

[63]  B. Podányi,et al.  Asymmetric reduction of a carbon–nitrogen double bond: enantioselective synthesis of 4,5-dihydro-3H-2,3-benzodiazepines , 1995 .

[64]  R. Gross,et al.  Ethyl Glucoside as a Multifunctional Initiator for Enzyme-Catalyzed Regioselective Lactone Ring-Opening Polymerization , 1998 .

[65]  Gjalt W. Huisman,et al.  Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic , 1999, Microbiology and Molecular Biology Reviews.

[66]  John D. Hayler,et al.  Key green chemistry research areas—a perspective from pharmaceutical manufacturers , 2007 .

[67]  P. Harrington,et al.  The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): A challenge for synthesis & process research , 2004 .

[68]  J. H. Edwards,et al.  Nitrilase-Catalysed Desymmetrisation of 3-Hydroxyglutaronitrile: Preparation of a Statin Side-Chain Intermediate , 2006 .

[69]  David J. C. Constable,et al.  Metrics to ‘green’ chemistry—which are the best? , 2002 .

[70]  S. Jennewein,et al.  Taxol: biosynthesis, molecular genetics, and biotechnological applications , 2001, Applied Microbiology and Biotechnology.

[71]  David J. C. Constable,et al.  Cradle-to-gate life cycle inventory and assessment of pharmaceutical compounds , 2004 .

[72]  John L. Tucker,et al.  Green Chemistry, a Pharmaceutical Perspective , 2006 .

[73]  Junhua Tao,et al.  Recent Advances in Developing Chemoenzymatic Processes for Active Pharmaceutical Ingredients , 2007 .

[74]  John W. Frost,et al.  SHIKIMIC ACID AND QUINIC ACID : REPLACING ISOLATION FROM PLANT SOURCES WITH RECOMBINANT MICROBIAL BIOCATALYSIS , 1999 .

[75]  K. Toshima,et al.  Perspectives for synthesis and production of polyurethanes and related polymers by enzymes directed toward green and sustainable chemistry , 2006, Applied Microbiology and Biotechnology.

[76]  Alan Millar,et al.  The synthesis of (4R-cis)-1,1-dimethylethyl 6-cyanomethyl-2,2-dimethyl-1,3-dioxane-4-acetate, a key intermediate for the preparation of CI-981, a highly potent, tissue selective inhibitor of HMG-CoA reductase , 1992 .

[77]  J. W. Frost,et al.  Environmentally compatible synthesis of adipic acid from D-glucose , 1994 .

[78]  D. Kaplan,et al.  Lipase-Catalyzed Ring-Opening Polymerization of Trimethylene Carbonate† , 1997 .

[79]  E. Corey,et al.  A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. , 2006, Journal of the American Chemical Society.

[80]  Barry M. Trost,et al.  Atom Economy—A Challenge for Organic Synthesis: Homogeneous Catalysis Leads the Way , 1995 .