Geometric properties of zero-torsion parallel kinematics machines
暂无分享,去创建一个
[1] Hieu Minh Trinh,et al. Two-mode overconstrained three-DOFs rotational-translational linear-motor-based parallel-kinematics mechanism for machine tool applications , 2007, Robotica.
[2] Richard M. Murray,et al. A Mathematical Introduction to Robotic Manipulation , 1994 .
[3] Kadri Buruncuk,et al. On the kinematic of a 3-DOF Stewart platform , 1999, J. Field Robotics.
[4] J. M. Hervé,et al. Translational parallel manipulators with doubly planar limbs , 2006 .
[5] J. M. Hervé. The Lie group of rigid body displacements, a fundamental tool for mechanism design , 1999 .
[6] J. M. Hervé,et al. Asymmetrical three-DOFs rotational-translational parallel-kinematics mechanisms based on lie group theory , 2006 .
[7] Sébastien Briot,et al. Singularity analysis of zero-torsion parallel mechanisms , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.
[8] J. M. Hervé,et al. Asymmetrical 3-dof spherical parallel mechanisms , 2005 .
[9] A. W. Knapp. Lie groups beyond an introduction , 1988 .
[10] Mark Elling Rosheim,et al. New high-angulation omni-directional sensor mount , 2002, SPIE Optics + Photonics.
[11] Qinchuan Li,et al. 1T2R Parallel Mechanisms Without Parasitic Motion , 2010, IEEE Transactions on Robotics.
[12] K. H. Hunt,et al. Kinematic geometry of mechanisms , 1978 .
[13] Clément Gosselin,et al. Constraint singularities of parallel mechanisms , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).
[14] C. Gosselin,et al. Advantages of the modified Euler angles in the design and control of PKMs , 2002 .
[15] Z. Huang,et al. Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method , 2003, Int. J. Robotics Res..
[16] Zexiang Li,et al. A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators , 2007, IEEE Transactions on Robotics.
[17] Clément Gosselin,et al. Type synthesis of three-DOF up-equivalent parallel manipulators using a virtual-chain approach , 2006, ARK.
[18] Hui Zhao,et al. New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs , 2002 .
[19] Pavel Winternitz,et al. Subgroups of the Euclidean group and symmetry breaking in nonrelativistic quantum mechanics , 1977 .
[20] W. Boothby. An introduction to differentiable manifolds and Riemannian geometry , 1975 .
[21] Jeha Ryu,et al. Orientation workspace analysis of 6-DOF parallel manipulators , 1999 .
[22] R. Mrugala,et al. Lie Groups Beyond an Introduction, 2nd Edition, Anthony W. Knapp, in: Birkhäuser Series: Progress in Mathematics, Vol. 140. Birkhäuser, Boston Basel Berlin (2002), xviii+812 pp., CHF 138.-/EUR 88 (hardcover)., ISBN: 0-8176-4259-5 , 2005 .
[23] Janusz,et al. Geometrical Methods in Robotics , 1996, Monographs in Computer Science.
[24] Ilian A. Bonev. Direct kinematics of zero-torsion parallel mechanisms , 2008, 2008 IEEE International Conference on Robotics and Automation.
[25] Xin-Jun Liu,et al. Some New Parallel Mechanisms Containing the Planar Four-Bar Parallelogram , 2003, Int. J. Robotics Res..
[26] Xianwen Kong,et al. Type Synthesis of Parallel Mechanisms , 2010, Springer Tracts in Advanced Robotics.