Passive interferometric symmetries of multimode Gaussian pure states

As large-scale multimode Gaussian states begin to become accessible in the laboratory, their representation and analysis become a useful topic of research in their own right. The graphical calculus for Gaussian pure states provides powerful tools for their representation, while this work presents a useful tool for their analysis: passive interferometric (i.e., number-conserving) symmetries. Here we show that these symmetries of multimode Gaussian states simplify calculations in measurement-based quantum computing and provide constructive tools for engineering large-scale harmonic systems with specific physical properties, and we provide a general mathematical framework for deriving them. Such symmetries are generated by linear combinations of operators expressed in the Schwinger representation of U(2), called nullifiers because the Gaussian state in question is a zero eigenstate of them. This general framework is shown to have applications in the noise analysis of continuous-various cluster states and is expected to have additional applications in future work with large-scale multimode Gaussian states.

[1]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[2]  Ruffin Evans,et al.  On the experimental violation of Mermin's inequality with imperfect measurements , 2011, Quantum Inf. Comput..

[3]  P. Loock,et al.  Building Gaussian cluster states by linear optics , 2006, quant-ph/0610119.

[4]  A. Furusawa,et al.  Experimental generation of four-mode continuous-variable cluster states , 2008, 2008 International Nano-Optoelectronics Workshop.

[5]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[6]  Nicolas C. Menicucci,et al.  Detecting topological entanglement entropy in a lattice of quantum harmonic oscillators , 2014 .

[7]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[8]  Entanglement criteria via the uncertainty relations in su(2) and su(1,1) algebras : Detection of non-Gaussian entangled states , 2005, quant-ph/0512180.

[9]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[10]  Klauder,et al.  SU(2) and SU(1,1) interferometers. , 1986, Physical review. A, General physics.

[11]  A. Furusawa,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[12]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[13]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  Generation of multipartite spin entanglement from multimode squeezed states , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[15]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[16]  N. C. Menicucci,et al.  Fault-tolerant measurement-based quantum computing with continuous-variable cluster states. , 2013, Physical review letters.

[17]  Nicolas C. Menicucci,et al.  Graphical calculus for Gaussian pure states , 2010, 1007.0725.

[18]  Su,et al.  Quantum versus stochastic or hidden-variable fluctuations in two-photon interference effects. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[19]  J. Eisert,et al.  Limitations of quantum computing with Gaussian cluster states , 2010, 1004.0081.

[20]  Entanglement purification of gaussian continuous variable quantum states , 1999, QELS 2000.

[21]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[22]  S. Braunstein,et al.  Continuous-variable Gaussian analog of cluster states (5 pages) , 2006 .

[23]  N. C. Menicucci,et al.  Ultracompact generation of continuous-variable cluster states , 2007, quant-ph/0703096.

[24]  Nicolas J Cerf,et al.  No-go theorem for gaussian quantum error correction. , 2008, Physical review letters.

[25]  Nicolas C. Menicucci,et al.  Weaving quantum optical frequency combs into continuous-variable hypercubic cluster states , 2013, 1309.4105.

[26]  The Schwinger Representation of a Group: Concept and Applications , 2005, quant-ph/0505012.

[27]  C. Xie,et al.  Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam. , 2002, Physical review letters.

[28]  Bonny L. Schumaker,et al.  Quantum mechanical pure states with gaussian wave functions , 1986 .

[29]  Pieter Kok,et al.  Unifying parameter estimation and the Deutsch-Jozsa algorithm for continuous variables , 2010, 1008.3291.

[30]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[31]  Christoph Simon,et al.  Theory of an entanglement laser. , 2003, Physical review letters.

[32]  P. Atkins,et al.  Angular momentum coherent states , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[33]  Nicolas C. Menicucci,et al.  The optical frequency comb as a one-way quantum computer , 2008, 0811.2799.

[34]  P. Drummond Violations of Bell's Inequality in Cooperative States , 1983 .

[35]  William J Munro,et al.  Quantum teleportation of optical quantum gates. , 2003, Physical review letters.

[36]  Rafael N. Alexander,et al.  Noise analysis of single-mode Gaussian operations using continuous-variable cluster states , 2013, 1311.3538.

[37]  A. Klein,et al.  Boson realizations of Lie algebras with applications to nuclear physics , 1991 .

[38]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[39]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[40]  Violation of multiparticle Bell inequalities for low- and high-flux parametric amplification using both vacuum and entangled input states , 2001, quant-ph/0104139.

[41]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[42]  N. C. Menicucci,et al.  Weaving quantum optical frequency combs into hypercubic cluster states , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[43]  Christine Silberhorn,et al.  Polarization squeezing and continuous-variable polarization entanglement , 2002 .

[44]  Auerbach,et al.  Spin dynamics in the square-lattice antiferromagnet. , 1988, Physical review letters.

[45]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[46]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[47]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[48]  Reid,et al.  Quantum correlations of phase in nondegenerate parametric oscillation. , 1988, Physical review letters.

[49]  Olivier Pfister,et al.  One-way quantum computing in the optical frequency comb. , 2008, Physical review letters.

[50]  C. Gerry,et al.  Finite violations of a Bell inequality for high spin: An optical realization , 2005 .

[51]  Multipartite continuous-variable entanglement from concurrent nonlinearities , 2004, quant-ph/0404049.

[52]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[53]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[54]  M. Hayashi,et al.  Quantum information with Gaussian states , 2007, 0801.4604.

[55]  Xiaolong Su,et al.  Experimental demonstration of unconditional entanglement swapping for continuous variables. , 2004, Physical review letters.

[56]  S. Flammia,et al.  Entangling the optical frequency comb: Simultaneous generation of multiple 2 × 2 and 2 × 3 continuous-variable cluster states in a single optical parametric oscillator , 2007, 0710.4980.

[57]  Rafael N. Alexander,et al.  One-way quantum computing with arbitrarily large time-frequency continuous-variable cluster states from a single optical parametric oscillator , 2015, 1509.00484.

[58]  Samuel L. Braunstein,et al.  Quantum error correction beyond qubits , 2008, 0811.3734.

[59]  C. Xie,et al.  Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. , 2002, Physical review letters.

[60]  Isaac L. Chuang,et al.  Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations , 1999, Nature.

[61]  Dutta,et al.  Quantum-noise matrix for multimode systems: U(n) invariance, squeezing, and normal forms. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[62]  Julian Schwinger,et al.  ANGULAR MOMENTUM , 2010 .

[63]  Leonhardt Quantum statistics of a lossless beam splitter: SU(2) symmetry in phase space. , 1993, Physical review. A, Atomic, molecular, and optical physics.