Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls

The optimal control problem in a finite time horizon with an indefinite quadratic cost function for a linear system subject to multiplicative noise on both the state and control can be solved via a constrained matrix differential Riccati equation. In this paper, we provide general necessary and sufficient conditions for the solvability of this generalized differential Riccati equation. Furthermore, its asymptotic behavior is investigated along with its connection to the generalized algebraic Riccati equation associated with the linear quadratic control problem in finite time horizon. Examples are presented to illustrate the results established.

[1]  R. Penrose A Generalized inverse for matrices , 1955 .

[2]  R. Penrose On best approximate solutions of linear matrix equations , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  R. E. Kalman,et al.  Contributions to the Theory of Optimal Control , 1960 .

[4]  W. Wonham On a Matrix Riccati Equation of Stochastic Control , 1968 .

[5]  W. Wonham On the Separation Theorem of Stochastic Control , 1968 .

[6]  A. Albert Conditions for Positive and Nonnegative Definiteness in Terms of Pseudoinverses , 1969 .

[7]  W. Wonham Random differential equations in control theory , 1970 .

[8]  J. Willems Least squares stationary optimal control and the algebraic Riccati equation , 1971 .

[9]  J. Bismut Linear Quadratic Optimal Stochastic Control with Random Coefficients , 1976 .

[10]  F. Callier,et al.  Criterion for the convergence of the solution of the Riccati differential equation , 1981 .

[11]  A. Bensoussan Lectures on stochastic control , 1982 .

[12]  W. T. Tucker Linear Estimation and Stochastic Control , 1984 .

[13]  R. Bellman,et al.  The Riccati Equation , 1986 .

[14]  A. Ran,et al.  Existence and comparison theorems for algebraic Riccati equations for continuous- and discrete-time systems , 1988 .

[15]  A. Pritchard,et al.  Stability radii of linear systems with respect to stochastic perturbations , 1992 .

[16]  L. Ghaoui,et al.  LMI optimization for nonstandard Riccati equations arising in stochastic control , 1996, IEEE Trans. Autom. Control..

[17]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[18]  D. Hinrichsen,et al.  Stochastic H∞ , 1998 .

[19]  V. Ugrinovskii Robust H∞ infinity control in the presence of stochastic uncertainty , 1998 .

[20]  M. Fragoso,et al.  A New Approach to Linearly Perturbed Riccati Equations Arising in Stochastic Control , 1998 .

[21]  D. Hinrichsen,et al.  Stochastic $H^\infty$ , 1998 .

[22]  Andrew E. B. Lim,et al.  Stochastic optimal LQR control with integral quadratic constraints and indefinite control weights , 1999, IEEE Trans. Autom. Control..

[23]  H. Trentelman When does the algebraic Riccati equation have a negative semi-definite solution? , 1999 .

[24]  Xun Yu Zhou,et al.  Relationship Between Backward Stochastic Differential Equations and Stochastic Controls: A Linear-Quadratic Approach , 2000, SIAM J. Control. Optim..

[25]  Xun Yu Zhou,et al.  Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls , 2000, IEEE Trans. Autom. Control..

[26]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[27]  Xun Yu Zhou,et al.  Stochastic Linear Quadratic Regulators with Indefinite Control Weight Costs. II , 2000, SIAM J. Control. Optim..

[28]  X. Zhou,et al.  Indefinite stochastic linear quadratic control and generalized differential Riccati equation , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[29]  V. Ugrinovskii Robust H 2 control in the presence of stochastic uncertainty , 2001 .

[30]  John B. Moore,et al.  Indefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati Equation , 2002, SIAM J. Control. Optim..