Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity.

[1]  S. Gould,et al.  Exaptation—a Missing Term in the Science of Form , 1982, Paleobiology.

[2]  D. Turner,et al.  Improved free-energy parameters for predictions of RNA duplex stability. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[3]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[4]  G. Venemâ,et al.  A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis , 1991 .

[5]  F. H. White,et al.  Lysozyme and alpha-lactalbumin: structure, function, and interrelationships. , 1991, Advances in protein chemistry.

[6]  A possible contribution of mRNA secondary structure to translation initiation efficiency in Lactococcus lactis. , 1991, FEMS microbiology letters.

[7]  P. Blackshear,et al.  Insulin induction of ornithine decarboxylase. Importance of mRNA secondary structure and phosphorylation of eucaryotic initiation factors eIF-4B and eIF-4E. , 1991, The Journal of biological chemistry.

[8]  D. Disilvestre,et al.  Regulation of the Escherichia coli uncH gene by mRNA secondary structure and translational coupling , 1992, Molecular microbiology.

[9]  K. Okamura-Ikeda,et al.  Molecular cloning of a cDNA encoding chicken T-protein of the glycine cleavage system and expression of the functional protein in Escherichia coli. Effect of mRNA secondary structure in the translational initiation region on expression. , 1992, The Journal of biological chemistry.

[10]  J. Maizel,et al.  Extensive sequence-specific information throughout the CAR/RRE, the target sequence of the human immunodeficiency virus type 1 Rev protein , 1992, Journal of virology.

[11]  C. Ehresmann,et al.  Functional sites in the 5' region of human immunodeficiency virus type 1 RNA form defined structural domains. , 1993, Journal of molecular biology.

[12]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[13]  P. Schuster,et al.  From sequences to shapes and back: a case study in RNA secondary structures , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  K. Stuart,et al.  Multiple guide RNAs for identical editing of Trypanosoma brucei apocytochrome b mRNA have an unusual minicircle location and are developmentally regulated. , 1994, The Journal of biological chemistry.

[15]  R. Jackson,et al.  Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. , 1995, RNA.

[16]  P. Wingfield,et al.  Sequence specificity in the higher-order interaction of the Rev protein of HIV-1 with its target sequence, the RRE. , 1995, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association.

[17]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration I. Neutral networks , 1995 .

[18]  M. Huynen,et al.  Smoothness within ruggedness: the role of neutrality in adaptation. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Schuster,et al.  Analysis of RNA sequence structure maps by exhaustive enumeration II. Structures of neutral networks and shape space covering , 1996 .

[20]  P. Schuster,et al.  Algorithm independent properties of RNA secondary structure predictions , 1996, European Biophysics Journal.

[21]  P. Schuster,et al.  Generic properties of combinatory maps: neutral networks of RNA secondary structures. , 1997, Bulletin of mathematical biology.

[22]  J. Gerhart,et al.  Cells, Embryos and Evolution , 1997 .

[23]  Peter F. Stadler,et al.  Spontaneous and Engineered Deletions in the 3′ Noncoding Region of Tick-Borne Encephalitis Virus: Construction of Highly Attenuated Mutants of a Flavivirus , 1998, Journal of Virology.

[24]  D. Herschlag,et al.  Catalytic promiscuity and the evolution of new enzymatic activities. , 1999, Chemistry & biology.

[25]  P. Schuster,et al.  Complete suboptimal folding of RNA and the stability of secondary structures. , 1999, Biopolymers.

[26]  W. Fontana,et al.  Plasticity, evolvability, and modularity in RNA. , 2000, The Journal of experimental zoology.

[27]  J. Parsch,et al.  Comparative sequence analysis and patterns of covariation in RNA secondary structures. , 2000, Genetics.

[28]  L. Ancel,et al.  Undermining the Baldwin expediting effect: does phenotypic plasticity accelerate evolution? , 2000, Theoretical population biology.

[29]  S. Sunyaev,et al.  Dobzhansky–Muller incompatibilities in protein evolution , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. West-Eberhard Developmental plasticity and evolution , 2003 .

[31]  M. Gelfand,et al.  Riboswitches: the oldest mechanism for the regulation of gene expression? , 2004, Trends in genetics : TIG.

[32]  A. Kern,et al.  Mechanisms and convergence of compensatory evolution in mammalian mitochondrial tRNAs , 2004, Nature Genetics.

[33]  K. Holsinger The neutral theory of molecular evolution , 2004 .

[34]  R. Breaker,et al.  Gene regulation by riboswitches , 2004, Nature Reviews Molecular Cell Biology.

[35]  G. Storz,et al.  An abundance of RNA regulators. , 2005, Annual review of biochemistry.

[36]  Dan S. Tawfik,et al.  The 'evolvability' of promiscuous protein functions , 2005, Nature Genetics.

[37]  M. Huynen Exploring phenotype space through neutral evolution , 1996, Journal of Molecular Evolution.

[38]  F. Arnold,et al.  Protein stability promotes evolvability. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Aya Kojima,et al.  fRNAdb: a platform for mining/annotating functional RNA candidates from non-coding RNA sequences , 2006, Nucleic Acids Res..

[40]  A. Wagner Robustness and evolvability: a paradox resolved , 2008, Proceedings of the Royal Society B: Biological Sciences.

[41]  Frances H Arnold,et al.  Neutral genetic drift can aid functional protein evolution , 2007, 0705.0201.

[42]  Dan S. Tawfik,et al.  Latent evolutionary potentials under the neutral mutational drift of an enzyme. , 2007, HFSP journal.

[43]  Andreas Wagner,et al.  New structural variation in evolutionary searches of RNA neutral networks , 2006, Biosyst..

[44]  Andreas Wagner,et al.  Protein robustness promotes evolutionary innovations on large evolutionary time-scales , 2008, Proceedings of the Royal Society B: Biological Sciences.

[45]  Dan S. Tawfik,et al.  Intense neutral drifts yield robust and evolvable consensus proteins. , 2008, Journal of molecular biology.

[46]  Surendra S. Negi,et al.  Thermodynamic fidelity of the mammalian cytochrome P450 2B4 active site in binding substrates and inhibitors. , 2008, Journal of molecular biology.

[47]  Andreas Wagner,et al.  Neutral network sizes of biological RNA molecules can be computed and are not atypically small , 2008, BMC Bioinformatics.

[48]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[49]  Dan S. Tawfik,et al.  Protein Dynamism and Evolvability , 2009, Science.

[50]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[51]  G. Storz,et al.  Regulatory RNAs in Bacteria , 2009, Cell.

[52]  Fyodor A. Kondrashov,et al.  Compensatory evolution in mitochondrial tRNAs navigates valleys of low fitness , 2010, Nature.

[53]  Dan S. Tawfik,et al.  Enzyme promiscuity: a mechanistic and evolutionary perspective. , 2010, Annual review of biochemistry.

[54]  A. Wagner,et al.  Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits , 2011, BMC Evolutionary Biology.

[55]  David Baltimore,et al.  Permissive Secondary Mutations Enable the Evolution of Influenza Oseltamivir Resistance , 2010, Science.

[56]  Andreas Wagner,et al.  The molecular origins of evolutionary innovations. , 2011, Trends in genetics : TIG.

[57]  Ard A Louis,et al.  Epistasis can lead to fragmented neutral spaces and contingency in evolution , 2011, Proceedings of the Royal Society B: Biological Sciences.

[58]  A. Wagner,et al.  Phenotypic robustness can increase phenotypic variability after nongenetic perturbations in gene regulatory circuits , 2010, Journal of evolutionary biology.

[59]  A. Wagner The role of robustness in phenotypic adaptation and innovation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[60]  Erich Bornberg-Bauer,et al.  Escape from Adaptive Conflict follows from weak functional trade-offs and mutational robustness , 2012, Proceedings of the National Academy of Sciences.

[61]  J. Cuesta,et al.  Evolution on genotype networks leads to phenotypic entrapment , 2013 .

[62]  Andreas Wagner,et al.  A latent capacity for evolutionary innovation through exaptation in metabolic systems , 2013, Nature.