A study on the (2+1)-dimensional and the (2+1)-dimensional higher-order Burgers equations

Abstract The (2 + 1)-dimensional Burgers equation and the (2 + 1)-dimensional higher-order Burgers equation are investigated. The Cole–Hopf transformation method is used to carry out this study. Multiple-kink solutions are formally derived for each equation.

[1]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .

[2]  Abdul-Majid Wazwaz Burgers hierarchy: Multiple kink solutions and multiple singular kink solutions , 2010, J. Frankl. Inst..

[3]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation , 2008, Appl. Math. Comput..

[4]  Jarmo Hietarinta,et al.  A Search for Bilinear Equations Passing Hirota''s Three-Soliton Condition , 1987 .

[5]  A. Wazwaz The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation , 2008, Appl. Math. Comput..

[6]  Abdul-Majid Wazwaz,et al.  Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations , 2009 .

[7]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions of two extended model equations for shallow water waves , 2008, Appl. Math. Comput..

[8]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[9]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[10]  Gaetano Vilasi,et al.  Integrable Hamiltonian Hierarchies , 2009 .

[11]  J. Burgers The Nonlinear Diffusion Equation , 2013 .

[12]  Ryogo Hirota,et al.  Resonance of Solitons in One Dimension , 1983 .

[13]  Abdul-Majid Wazwaz,et al.  Multiple kink solutions and multiple singular kink solutions for the (2 + 1)-dimensional Burgers equations , 2008, Appl. Math. Comput..

[14]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers equation and the coupled Burgers equations , 2007, Appl. Math. Comput..

[15]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation , 2008, Appl. Math. Comput..

[16]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method , 2007, Appl. Math. Comput..

[17]  Masaaki Ito,et al.  An Extension of Nonlinear Evolution Equations of the K-dV (mK-dV) Type to Higher Orders , 1980 .

[18]  Abdul-Majid Wazwaz,et al.  New solitons and kink solutions for the Gardner equation , 2007 .

[19]  Salah M. El-Sayed,et al.  A numerical solution and an exact explicit solution of the NLS equation , 2006, Appl. Math. Comput..

[20]  Anjan Biswas,et al.  Solitary wave solution for the generalized KdV equation with time-dependent damping and dispersion , 2009 .

[21]  Mehdi Dehghan,et al.  A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions , 2008, Math. Comput. Simul..

[22]  The integrable couplings of the generalized coupled Burgers hierarchy and its Hamiltonian structures , 2008 .

[23]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[24]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[25]  Emmanuel Yomba,et al.  New applications of the singular manifold method to the (2+1)-dimensional Burgers equations , 2006, Appl. Math. Comput..

[26]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Boussinesq equation , 2007, Appl. Math. Comput..

[27]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[28]  Abdul-Majid Wazwaz,et al.  The Hirota's direct method for multiple-soliton solutions for three model equations of shallow water waves , 2008, Appl. Math. Comput..

[29]  Abdul-Majid Wazwaz,et al.  New solitons and kinks solutions to the Sharma-Tasso-Olver equation , 2007, Appl. Math. Comput..

[30]  Abdul-Majid Wazwaz,et al.  Multiple soliton solutions and multiple singular soliton solutions for the (3 + 1)-dimensional Burgers equations , 2008, Appl. Math. Comput..

[31]  Anjan Biswas,et al.  Topological and non-topological solitons of nonlinear Klein-Gordon equations by He's semi-inverse variational principle , 2010, J. Frankl. Inst..