Lipid nanoparticles for the delivery of poorly water‐soluble drugs

Objectives  This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water‐soluble drugs, with a main focus on the parenteral and peroral use of these carriers.

[1]  Chong-Kook Kim,et al.  Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. , 2007, Biomaterials.

[2]  V Jenning,et al.  Encapsulation of retinoids in solid lipid nanoparticles (SLN). , 2001, Journal of microencapsulation.

[3]  Heike Bunjes,et al.  Incorporation of the Model Drug Ubidecarenone into Solid Lipid Nanoparticles , 2001, Pharmaceutical Research.

[4]  K. Westesen,et al.  Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction , 1993 .

[5]  R. Mumper,et al.  Development of idarubicin and doxorubicin solid lipid nanoparticles to overcome Pgp-mediated multiple drug resistance in leukemia. , 2009, Journal of biomedical nanotechnology.

[6]  Karsten Mäder,et al.  Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[7]  C. Larsen,et al.  Characteristics of drug substances in oily solutions. Drug release rate, partitioning and solubility. , 2002, International journal of pharmaceutics.

[8]  Heike Bunjes,et al.  Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the alpha-modification. , 2009, Molecular pharmaceutics.

[9]  M. Trotta,et al.  Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles , 1997 .

[10]  W Mehnert,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism. , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  K. Mäder,et al.  Physicochemical Investigations on Solid Lipid Nanoparticles and on Oil-Loaded Solid Lipid Nanoparticles: A Nuclear Magnetic Resonance and Electron Spin Resonance Study , 2003, Pharmaceutical Research.

[12]  R. Cavalli,et al.  Pharmacokinetics and tissue distribution of idarubicin-loaded solid lipid nanoparticles after duodenal administration to rats. , 2002, Journal of pharmaceutical sciences.

[13]  Walter Richter,et al.  Visualizing the structure of triglyceride nanoparticles in different crystal modifications. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[14]  R. Müller,et al.  Solid lipid nanoparticles (SLN) : an alternative colloidal carrier system for controlled drug delivery , 1995 .

[15]  M. Schubert,et al.  Structural investigations on lipid nanoparticles containing high amounts of lecithin. , 2006, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[16]  H. Korting,et al.  Glucocorticoid entrapment into lipid carriers--characterisation by parelectric spectroscopy and influence on dermal uptake. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[17]  C. Washington,et al.  Release rate measurements of model hydrophobic solutes from submicron triglyceride emulsions , 1995 .

[18]  C. Washington,et al.  Evaluation of non-sink dialysis methods for the measurement of drug release from colloids: effects of drug partition , 1989 .

[19]  Yaping Li,et al.  The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. , 2009, Biomaterials.

[20]  T. Unruh,et al.  Investigation on the flow behavior of dispersions of solid triglyceride nanoparticles. , 2004, International journal of pharmaceutics.

[21]  Heike Bunjes,et al.  Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. , 2007, Advanced drug delivery reviews.

[22]  R. Müller,et al.  SolEmuls-novel technology for the formulation of i.v. emulsions with poorly soluble drugs. , 2004, International journal of pharmaceutics.

[23]  G. Giammona,et al.  Preparation and Characterization of Solid Lipid Nanoparticles Containing Cloricromene , 2003, Drug delivery.

[24]  C. Washington Stability of lipid emulsions for drug delivery , 1996 .

[25]  Y. Carpentier,et al.  Advances in Intravenous Lipid Emulsions , 2000, World Journal of Surgery.

[26]  N. Garti,et al.  Crystallization and polymorphism of fats and fatty acids , 1988 .

[27]  Jing Qin,et al.  Solid lipid nanoparticles for enhancing vinpocetine's oral bioavailability. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[28]  J Szebeni,et al.  Formation of complement-activating particles in aqueous solutions of Taxol: possible role in hypersensitivity reactions. , 2001, International immunopharmacology.

[29]  R. Müller,et al.  Spray-drying of solid lipid nanoparticles (SLN TM). , 1998, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[30]  R. Müller,et al.  Cyclosporine-loaded solid lipid nanoparticles (SLN): drug-lipid physicochemical interactions and characterization of drug incorporation. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[31]  J. Macfie The development of fat emulsions. , 1999, Nutrition.

[32]  John W. Park,et al.  Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. , 2008, Journal of pharmaceutical sciences.

[33]  H. Bunjes,et al.  Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential , 1997 .

[34]  C. Washington,et al.  Partition of antimicrobial additives in an intravenous emulsion and their effect on emulsion physical stability. , 2005, International journal of pharmaceutics.

[35]  M. Schäfer-Korting,et al.  Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[36]  M. Sznitowska,et al.  Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. , 2001, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[37]  R. Mumper,et al.  In-vivo efficacy of novel paclitaxel nanoparticles in paclitaxel-resistant human colorectal tumors. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[38]  Hong Yuan,et al.  Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. , 2002, International journal of pharmaceutics.

[39]  R. Sharma,et al.  Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton's lymphoma tumor bearing mice. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[40]  R. Müller,et al.  Semisolid SLN dispersions for topical application: influence of formulation and production parameters on viscoelastic properties. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[41]  T. Unruh,et al.  Investigation on Particle Self-Assembly in Solid Lipid-Based Colloidal Drug Carrier Systems , 2004, Pharmaceutical Research.

[42]  Y. Cai,et al.  Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[43]  M. Eandi,et al.  Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[44]  S. Tamilvanan Formulation of multifunctional oil-in-water nanosized emulsions for active and passive targeting of drugs to otherwise inaccessible internal organs of the human body. , 2009, International journal of pharmaceutics.

[45]  D. Driscoll,et al.  Lipid injectable emulsions: 2006. , 2006, Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition.

[46]  K. Westesen,et al.  Investigations on solid lipid nanoparticles prepared by precipitation in o/w emulsions , 1996 .

[47]  V. Venkateswarlu,et al.  Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[48]  R. Cavalli,et al.  Preparation and characterization of solid lipid nanospheres containing paclitaxel. , 2000, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[49]  Schwarz,et al.  Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). , 1997, International journal of pharmaceutics.

[50]  P. Constantinides,et al.  Tocol emulsions for drug solubilization and parenteral delivery. , 2004, Advanced drug delivery reviews.

[51]  K. Westesen,et al.  Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles , 1997 .

[52]  G. Giammona,et al.  Solid Lipid Nanoparticles Containing Tamoxifen Characterization and In Vitro Antitumoral Activity , 2005, Drug delivery.

[53]  K. Westesen,et al.  Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles , 1994 .

[54]  H. Bunjes,et al.  Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[55]  H. Bunjes,et al.  Effects of surfactants on the crystallization and polymorphism of lipid nanoparticles , 2002 .

[56]  S. Wartewig,et al.  Solid Lipid Nanoparticles (SLN) and Oil-Loaded SLN Studied by Spectrofluorometry and Raman Spectroscopy , 2005, Pharmaceutical Research.

[57]  R. Müller,et al.  Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. , 1999, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[58]  J. Kristl,et al.  Influence of spin probe structure on its distribution in SLN dispersions. , 2000, International journal of pharmaceutics.

[59]  M. Schubert,et al.  Solvent injection as a new approach for manufacturing lipid nanoparticles--evaluation of the method and process parameters. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[60]  H. Bunjes,et al.  Influence of emulsifiers on the crystallization of solid lipid nanoparticles. , 2003, Journal of pharmaceutical sciences.

[61]  Heike Bunjes,et al.  Crystallization tendency and polymorphic transitions in triglyceride nanoparticles , 1996 .

[62]  M. Koch,et al.  Effect of Particle Size on Colloidal Solid Triglycerides , 2000 .

[63]  C. Müller-Goymann,et al.  Drug release and permeation studies of nanosuspensions based on solidified reverse micellar solutions (SRMS). , 2005, International journal of pharmaceutics.

[64]  M. Morari,et al.  Solid Lipid Nanoparticles as Delivery Systems for Bromocriptine , 2008, Pharmaceutical Research.

[65]  L. Rizza,et al.  Characterization of indomethacin-loaded lipid nanoparticles by differential scanning calorimetry. , 2005, International journal of pharmaceutics.

[66]  Qiang Zhang,et al.  In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel. , 2001, Chemical & pharmaceutical bulletin.

[67]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[68]  Björn Bergenståhl,et al.  Preparation of submicron drug particles in lecithin-stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate , 1992 .

[69]  H. Bunjes,et al.  Manufacture, Characterization, and Applications of Solid Lipid Nanoparticles as Drug Delivery Systems , 2005 .

[70]  H. Bunjes,et al.  Drug release from differently structured monoolein/poloxamer nanodispersions studied with differential pulse polarography and ultrafiltration at low pressure. , 2007, Journal of pharmaceutical sciences.

[71]  R. Cavalli,et al.  Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). , 2002, International journal of pharmaceutics.

[72]  Chong-K. Kim,et al.  Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. , 2002, International journal of pharmaceutics.

[73]  W. Mehnert,et al.  Atomic Force Microscopy Studies of Solid Lipid Nanoparticles , 1996, Pharmaceutical Research.

[74]  Xiangliang Yang,et al.  The research on the anti-inflammatory activity and hepatotoxicity of triptolide-loaded solid lipid nanoparticle. , 2005, Pharmacological research.

[75]  K. Westesen,et al.  BIODEGRADABLE COLLOIDAL DRUG CARRIER SYSTEMS BASED ON SOLID LIPIDS , 1996 .

[76]  Arvid Wretlind,et al.  Invited Review: Development of Fat Emulsions , 1981 .

[77]  S. Benita,et al.  A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure , 1993 .

[78]  M. Lawrence,et al.  Effect of oil on the level of solubilization of testosterone propionate into nonionic oil-in-water microemulsions. , 1998, Journal of pharmaceutical sciences.

[79]  K. Westesen,et al.  Physicochemical characterization of a model intravenous oil-in-water emulsion. , 1992, Journal of pharmaceutical sciences.

[80]  Liandong Hu,et al.  Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs , 2004, The Journal of pharmacy and pharmacology.

[81]  C. Lutton,et al.  Lipid composition and structure of commercial parenteral emulsions. , 1994, Biochimica et biophysica acta.

[82]  R. Cavalli,et al.  Study by X-ray powder diffraction and differential scanning calorimetry of two model drugs, phenothiazine and nifedipine, incorporated into lipid nanoparticles , 1995 .

[83]  R. Mumper,et al.  Paclitaxel nanoparticles for the potential treatment of brain tumors. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[84]  K. Wasan,et al.  A lipophilic paclitaxel derivative incorporated in a lipid emulsion for parenteral administration. , 2003, Journal of controlled release : official journal of the Controlled Release Society.

[85]  Heike Bunjes,et al.  Flow cytometry as a new approach to investigate drug transfer between lipid particles. , 2010, Molecular pharmaceutics.

[86]  J. Golenser,et al.  Cyclosporin nanoparticulate lipospheres for oral administration. , 2004, Journal of pharmaceutical sciences.

[87]  M. Koch,et al.  Observation of Size-Dependent Melting in Lipid Nanoparticles , 1999 .

[88]  B. Boyd Characterisation of drug release from cubosomes using the pressure ultrafiltration method. , 2003, International journal of pharmaceutics.

[89]  H. Bunjes Characterization of Solid Lipid Nano-and Microparticles , 2004 .

[90]  Mhj Koch,et al.  Self-Assembly of Triglyceride Nanocrystals in Suspension , 2002 .

[91]  M. Hashida,et al.  Long circulating emulsion carrier systems for highly lipophilic drugs. , 1994, Biological & pharmaceutical bulletin.