Estimation of the directions of arrival of signals in unknown correlated noise. I. The MAP approach and its implementation

The authors propose a method of direction of arrival (DOA) estimation of signals in the presence of noise whose covariance matrix is unknown and arbitrary, other than being positive definite. They examine the projection of the data onto the noise subspace. The conditional probability density function (PDF) of the projected data given the signal parameters and the unknown projected noise covariance matrix is first formed. The a posteriori PDF of the signal parameters alone is then obtained by assigning a noninformative a priori PDF to the unknown noise covariance matrix and integrating out this quantity. A simple criterion for the maximum a posteriori (MAP) estimate of the DOAs of the signals is established. Some properties of this criterion are discussed, and an efficient numerical algorithm for the implementation of this criterion is developed. The advantage of this method is that the noise covariance matrix does not have to be known, nor must it be estimated. >

[1]  Ken Sharman,et al.  Maximum likelihood parameter estimation by simulated annealing , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[2]  Kon Max Wong,et al.  On information theoretic criteria for determining the number of signals in high resolution array processing , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  G. Bienvenu,et al.  Optimality of high resolution array processing using the eigensystem approach , 1983 .

[4]  James P. Reilly,et al.  Statistical analysis of the performance of information theoretic criteria in the detection of the number of signals in array processing , 1989, IEEE Trans. Acoust. Speech Signal Process..

[5]  James P. Reilly,et al.  Estimation of the directions of arrival of signals in unknown correlated noise. II. Asymptotic behavior and performance of the MAP approach , 1992, IEEE Trans. Signal Process..

[6]  Z. Bai,et al.  On detection of the number of signals in presence of white noise , 1985 .

[7]  R. Kumaresan,et al.  Estimating the Angles of Arrival of Multiple Plane Waves , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[8]  S. DeGraaf,et al.  Improving the resolution of bearing in passive sonar arrays by eigenvalue analysis , 1981 .

[9]  Björn E. Ottersten,et al.  Multiple invariance ESPRIT , 1992, IEEE Trans. Signal Process..

[10]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[11]  N. R. Goodman Statistical analysis based on a certain multivariate complex Gaussian distribution , 1963 .

[12]  Thomas Kailath,et al.  Eigenstructure methods for direction of arrival estimation in the presence of unknown noise fields , 1986, IEEE Trans. Acoust. Speech Signal Process..

[13]  H. T. Kung,et al.  Matrix Triangularization By Systolic Arrays , 1982, Optics & Photonics.

[14]  R. Kumaresan,et al.  Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.

[15]  George E. P. Box,et al.  The Bayesian estimation of common parameters from several responses , 1965 .

[16]  Yoram Bresler,et al.  Exact maximum likelihood parameter estimation of superimposed exponential signals in noise , 1986, IEEE Trans. Acoust. Speech Signal Process..

[17]  F. Graybill,et al.  Matrices with Applications in Statistics. , 1984 .

[18]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[19]  F. R. Gantmakher The Theory of Matrices , 1984 .

[20]  Björn E. Ottersten,et al.  Detection and estimation in sensor arrays using weighted subspace fitting , 1991, IEEE Trans. Signal Process..

[21]  Philip E. Gill,et al.  Practical optimization , 1981 .

[22]  S. Haykin,et al.  Maximum-likelihood receiver for low-angle tracking radar. Part 2: The nonsymmetric case , 1982 .

[23]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[24]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[25]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[26]  Ilan Ziskind,et al.  Maximum likelihood localization of multiple sources by alternating projection , 1988, IEEE Trans. Acoust. Speech Signal Process..

[27]  Thomas Kailath,et al.  Detection of signals by information theoretic criteria , 1985, IEEE Trans. Acoust. Speech Signal Process..

[28]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[29]  Qiang Wu,et al.  A parametric method for determining the number of signals in narrow-band direction finding , 1991, IEEE Trans. Signal Process..

[30]  Michael I. Miller,et al.  Maximum-likelihood narrow-band direction finding and the EM algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..

[31]  Paruchuri R. Krishnaiah,et al.  On some nonparametric methods for detection of the number of signals , 1987, IEEE Trans. Acoust. Speech Signal Process..

[32]  L. E. Franks,et al.  Signal theory , 1969 .

[33]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .