Dynamic complex modulus predictions of hot-mix asphalt using a micromechanical-based finite element model

A micromechanical-based finite element (FE) model was used to predict the dynamic complex modulus ( E*) of the hot-mix asphalt (HMA). The microstructure of HMA was captured with a high resolution scanner. Two material phases (aggregates and sand mastic) of HMA were modelled with finite elements. The sand mastic herein was composed of fines and asphalt binder with some fine aggregates. The dynamic complex modulus of the sand mastic under different temperatures and loading frequencies was measured in an experimental program. The corresponding principles were applied to bridge the elastic simulation and viscoelastic behavior with the input of the viscoelastic mastic properties. The input parameters in the FE model include the dynamic complex modulus of the sand mastic, the elastic modulus of the aggregates, and the microstructure of the HMA. The E* values of the HMA were measured and used to compare the E* predicted from the FE model. It is found that the FE approach used in this paper has the ability to pre...

[1]  Arun Shukla,et al.  Microstructural Simulation of Asphalt Materials: Modeling and Experimental Studies , 2004 .

[2]  William G. Buttlar,et al.  Discrete Element Modeling of Asphalt Concrete: Microfabric Approach , 2001 .

[3]  Hussain U Bahia,et al.  MODELING AND EXPERIMENTAL MEASUREMENTS OF STRAIN DISTRIBUTION IN ASPHALT MIXES , 2001 .

[4]  Qingli Dai,et al.  Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete-Element Models , 2007 .

[5]  Jay N. Meegoda,et al.  Micromechanical Model for Temperature Effects of Hot-Mix Asphalt Concrete , 1999 .

[6]  William G. Buttlar,et al.  Discrete Element Modeling to Predict the Modulus of Asphalt Concrete Mixtures , 2004 .

[7]  Murthy N. Guddati,et al.  Toward a Micromechanics-Based Procedure to Characterize Fatigue Performance of Asphalt Concrete , 2002 .

[8]  M. Sadd,et al.  Parametric Model Study of Microstructure Effects on Damage Behavior of Asphalt Samples , 2004 .

[9]  Qingli Dai,et al.  A micromechanical finite element model for linear and damage‐coupled viscoelastic behaviour of asphalt mixture , 2006 .

[10]  Ralph Haas,et al.  Micromechanical modelling of asphalt concrete in connection with pavement rutting problems , 1992 .

[11]  B. C. Trent,et al.  Modeling Fracture in Cemented Granular Materials , 1994 .

[12]  A. Collop,et al.  Linear Rheological Behavior of Bituminous Paving Materials , 2004 .

[13]  Gilles Pijaudier-Cabot,et al.  Random particle simulation of damage and fracture in particulate or fiber-reinforced composites , 1990 .

[14]  Matthew W Witczak,et al.  Viscoelastic, Viscoplastic, and Damage Modeling of Asphalt Concrete in Unconfined Compression , 2003 .

[15]  Arun Shukla,et al.  Prediction of Damage Behaviors in Asphalt Materials Using a Micromechanical Finite-Element Model and Image Analysis , 2005 .

[16]  William G. Buttlar,et al.  Micromechanical Modeling Approach to Predict Compressive Dynamic Moduli of Asphalt Mixtures Using the Distinct Element Method , 2006 .

[17]  Richard Schapery Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media , 1984 .

[18]  Eyad Masad,et al.  CHARACTERIZATION OF AIR VOID DISTRIBUTION IN ASPHALT MIXES USING X-RAY COMPUTED TOMOGRAPHY , 2002 .

[19]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[20]  J. Meegoda,et al.  Micromechanical Simulation of Hot Mix Asphalt , 1997 .

[21]  A. T. Papagiannakis,et al.  Micromechanical Analysis of Viscoelastic Properties of Asphalt Concretes , 2002 .

[22]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[23]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[24]  William G. Buttlar,et al.  Application of Discrete Element Modeling Techniques to Predict the Complex Modulus of Asphalt–Aggregate Hollow Cylinders Subjected to Internal Pressure , 2005 .

[25]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[26]  Matthew Witczak Appendixes to NCHRP Report 547: Simple Performance Tests and Advanced Materials Characterization Models , 2005 .

[27]  Hussain U Bahia,et al.  Distribution of Strains Within Hot-Mix Asphalt Binders: Applying Imaging and Finite-Element Techniques , 2000 .

[28]  Zhanping You,et al.  Review of advances in micromechanical modeling of aggregate–aggregate interactions in asphalt mixtures , 2007 .