Dynamic complex modulus predictions of hot-mix asphalt using a micromechanical-based finite element model
暂无分享,去创建一个
[1] Arun Shukla,et al. Microstructural Simulation of Asphalt Materials: Modeling and Experimental Studies , 2004 .
[2] William G. Buttlar,et al. Discrete Element Modeling of Asphalt Concrete: Microfabric Approach , 2001 .
[3] Hussain U Bahia,et al. MODELING AND EXPERIMENTAL MEASUREMENTS OF STRAIN DISTRIBUTION IN ASPHALT MIXES , 2001 .
[4] Qingli Dai,et al. Prediction of Creep Stiffness of Asphalt Mixture with Micromechanical Finite-Element and Discrete-Element Models , 2007 .
[5] Jay N. Meegoda,et al. Micromechanical Model for Temperature Effects of Hot-Mix Asphalt Concrete , 1999 .
[6] William G. Buttlar,et al. Discrete Element Modeling to Predict the Modulus of Asphalt Concrete Mixtures , 2004 .
[7] Murthy N. Guddati,et al. Toward a Micromechanics-Based Procedure to Characterize Fatigue Performance of Asphalt Concrete , 2002 .
[8] M. Sadd,et al. Parametric Model Study of Microstructure Effects on Damage Behavior of Asphalt Samples , 2004 .
[9] Qingli Dai,et al. A micromechanical finite element model for linear and damage‐coupled viscoelastic behaviour of asphalt mixture , 2006 .
[10] Ralph Haas,et al. Micromechanical modelling of asphalt concrete in connection with pavement rutting problems , 1992 .
[11] B. C. Trent,et al. Modeling Fracture in Cemented Granular Materials , 1994 .
[12] A. Collop,et al. Linear Rheological Behavior of Bituminous Paving Materials , 2004 .
[13] Gilles Pijaudier-Cabot,et al. Random particle simulation of damage and fracture in particulate or fiber-reinforced composites , 1990 .
[14] Matthew W Witczak,et al. Viscoelastic, Viscoplastic, and Damage Modeling of Asphalt Concrete in Unconfined Compression , 2003 .
[15] Arun Shukla,et al. Prediction of Damage Behaviors in Asphalt Materials Using a Micromechanical Finite-Element Model and Image Analysis , 2005 .
[16] William G. Buttlar,et al. Micromechanical Modeling Approach to Predict Compressive Dynamic Moduli of Asphalt Mixtures Using the Distinct Element Method , 2006 .
[17] Richard Schapery. Correspondence principles and a generalizedJ integral for large deformation and fracture analysis of viscoelastic media , 1984 .
[18] Eyad Masad,et al. CHARACTERIZATION OF AIR VOID DISTRIBUTION IN ASPHALT MIXES USING X-RAY COMPUTED TOMOGRAPHY , 2002 .
[19] Albert Einstein,et al. Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.
[20] J. Meegoda,et al. Micromechanical Simulation of Hot Mix Asphalt , 1997 .
[21] A. T. Papagiannakis,et al. Micromechanical Analysis of Viscoelastic Properties of Asphalt Concretes , 2002 .
[22] A. Einstein. Eine neue Bestimmung der Moleküldimensionen , 1905 .
[23] W. Voigt. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .
[24] William G. Buttlar,et al. Application of Discrete Element Modeling Techniques to Predict the Complex Modulus of Asphalt–Aggregate Hollow Cylinders Subjected to Internal Pressure , 2005 .
[25] A. Reuss,et al. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .
[26] Matthew Witczak. Appendixes to NCHRP Report 547: Simple Performance Tests and Advanced Materials Characterization Models , 2005 .
[27] Hussain U Bahia,et al. Distribution of Strains Within Hot-Mix Asphalt Binders: Applying Imaging and Finite-Element Techniques , 2000 .
[28] Zhanping You,et al. Review of advances in micromechanical modeling of aggregate–aggregate interactions in asphalt mixtures , 2007 .