Plus ça change – evolutionary sequence divergence predicts protein subcellular localization signals

[1]  Yoshinori Fukasawa,et al.  Plus ça change – evolutionary sequence divergence predicts protein subcellular localization signals , 2014, BMC Genomics.

[2]  S. Doyle,et al.  Evidence of Evolutionary Constraints That Influences the Sequence Composition and Diversity of Mitochondrial Matrix Targeting Signals , 2013, PloS one.

[3]  I. Small,et al.  A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. , 2013, Biochimica et biophysica acta.

[4]  E. Glaser,et al.  Processing peptidases in mitochondria and chloroplasts. , 2013, Biochimica et biophysica acta.

[5]  Yoshinori Fukasawa,et al.  Evolutionary sequence divergence predicts protein sub-cellular localization signals , 2011, 2011 IEEE International Conference on Systems Biology (ISB).

[6]  T. Langer,et al.  Presequence‐dependent folding ensures MrpL32 processing by the m‐AAA protease in mitochondria , 2011, The EMBO journal.

[7]  N. Pfanner,et al.  Mitochondrial protein turnover: role of the precursor intermediate peptidase Oct1 in protein stabilization , 2011, Molecular biology of the cell.

[8]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[9]  O. Pines,et al.  Dual targeting of mitochondrial proteins: mechanism, regulation and function. , 2011, Biochimica et biophysica acta.

[10]  D. Kohda,et al.  Dual role of the receptor Tom20 in specificity and efficiency of protein import into mitochondria , 2010, Proceedings of the National Academy of Sciences.

[11]  K. Nakai,et al.  Prediction of subcellular locations of proteins: Where to proceed? , 2010, Proteomics.

[12]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010, Bioinform..

[13]  Fredrik Johansson,et al.  A comparative study of conservation and variation scores , 2010, BMC Bioinformatics.

[14]  Lutz Bachmann,et al.  Phylogenetic footprinting of non-coding RNA: hammerhead ribozyme sequences in a satellite DNA family of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae) , 2010, BMC Evolutionary Biology.

[15]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[16]  N. Pfanner,et al.  Global Analysis of the Mitochondrial N-Proteome Identifies a Processing Peptidase Critical for Protein Stability , 2009, Cell.

[17]  A. Millar,et al.  Refining the Definition of Plant Mitochondrial Presequences through Analysis of Sorting Signals, N-Terminal Modifications, and Cleavage Motifs1[W][OA] , 2009, Plant Physiology.

[18]  Richard J. Edwards,et al.  Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery , 2009, Bioinform..

[19]  Karl Frank,et al.  High-performance signal peptide prediction based on sequence alignment techniques , 2008, Bioinform..

[20]  Henrik Kaessmann,et al.  Mitochondrial Targeting Adaptation of the Hominoid-Specific Glutamate Dehydrogenase Driven by Positive Darwinian Selection , 2008, PLoS genetics.

[21]  D. Kohda,et al.  Tom20 recognizes mitochondrial presequences through dynamic equilibrium among multiple bound states , 2007, The EMBO journal.

[22]  Mona Singh,et al.  Predicting functionally important residues from sequence conservation , 2007, Bioinform..

[23]  Paul Horton,et al.  Nucleic Acids Research Advance Access published May 21, 2007 WoLF PSORT: protein localization predictor , 2007 .

[24]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[25]  B. Dujon Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution. , 2006, Trends in genetics : TIG.

[26]  G. Kryukov,et al.  Is there a twenty third amino acid in the genetic code? , 2006, Trends in genetics : TIG.

[27]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[28]  Albert Sickmann,et al.  Proteomic analysis of the yeast mitochondrial outer membrane reveals accumulation of a subclass of preproteins. , 2005, Molecular biology of the cell.

[29]  Dan Roth,et al.  Generalization Bounds for the Area Under the ROC Curve , 2005, J. Mach. Learn. Res..

[30]  E. Rugarli,et al.  The m-AAA Protease Defective in Hereditary Spastic Paraplegia Controls Ribosome Assembly in Mitochondria , 2005, Cell.

[31]  Kevin P. Byrne,et al.  The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species. , 2005, Genome research.

[32]  T. Langer,et al.  Role of the Novel Metallopeptidase MoP112 and Saccharolysin for the Complete Degradation of Proteins Residing in Different Subcompartments of Mitochondria* , 2005, Journal of Biological Chemistry.

[33]  N. Ben-Tal,et al.  Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. , 2004, Molecular biology and evolution.

[34]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[35]  F. Legeai,et al.  Predotar: A tool for rapidly screening proteomes for N‐terminal targeting sequences , 2004, Proteomics.

[36]  K. Nakai,et al.  PROTEIN SUBCELLULAR LOCALIZATION PREDICTION , 2008 .

[37]  B. Rost,et al.  Better prediction of sub‐cellular localization by combining evolutionary and structural information , 2003, Proteins.

[38]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[39]  Minoru Kanehisa,et al.  Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs , 2003, Bioinform..

[40]  Burkhard Rost,et al.  Sequence conserved for subcellular localization , 2002, Protein science : a publication of the Protein Society.

[41]  P. Cavadini,et al.  Mitochondrial processing peptidases. , 2002, Biochimica et biophysica acta.

[42]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[43]  M. Gerstein,et al.  Subcellular localization of the yeast proteome. , 2002, Genes & development.

[44]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[45]  J. Liu,et al.  Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes. , 2001, Nucleic acids research.

[46]  M. Gerstein,et al.  A Bayesian system integrating expression data with sequence patterns for localizing proteins: comprehensive application to the yeast genome. , 2000, Journal of molecular biology.

[47]  C. Pál,et al.  The molecular evolution of signal peptides. , 2000, Gene.

[48]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[49]  Pierre Baldi,et al.  Assessing the accuracy of prediction algorithms for classification: an overview , 2000, Bioinform..

[50]  Zheng Yuan Prediction of protein subcellular locations using Markov chain models , 1999, FEBS letters.

[51]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Hubbard,et al.  Using neural networks for prediction of the subcellular location of proteins. , 1998, Nucleic acids research.

[53]  P Bork,et al.  Wanted: subcellular localization of proteins based on sequence. , 1998, Trends in cell biology.

[54]  B. Rost,et al.  Adaptation of protein surfaces to subcellular location. , 1998, Journal of molecular biology.

[55]  P. Aloy,et al.  Relation between amino acid composition and cellular location of proteins. , 1997, Journal of molecular biology.

[56]  B. Dobberstein,et al.  Common Principles of Protein Translocation Across Membranes , 1996, Science.

[57]  K Nishikawa,et al.  Discrimination of intracellular and extracellular proteins using amino acid composition and residue-pair frequencies. , 1994, Journal of molecular biology.

[58]  T. Tsukamoto,et al.  Characterization of the signal peptide at the amino terminus of the rat peroxisomal 3-ketoacyl-CoA thiolase precursor. , 1994, The Journal of biological chemistry.

[59]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[60]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[61]  M. Kitakawa,et al.  Extended N‐terminal sequencing of proteins of the large ribosomal subunit from yeast mitochondria , 1991, FEBS letters.

[62]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[63]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[64]  B. Dobberstein,et al.  Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma , 1975, The Journal of cell biology.

[65]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[66]  Christophe Dessimoz,et al.  Inferring orthology and paralogy. , 2012, Methods in molecular biology.

[67]  R. Ke,et al.  Nuclear localization of proteins with a charge periodicity of 28 residues , 2007 .

[68]  Michel Schneider,et al.  UniProtKB/Swiss-Prot. , 2007, Methods in molecular biology.

[69]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[70]  Alberto Maria Segre,et al.  Programs for Machine Learning , 1994 .

[71]  G von Heijne,et al.  Patterns of amino acids near signal-sequence cleavage sites. , 1983, European journal of biochemistry.