A topology-preserving optimization algorithm for polycube mapping

We present an effective optimization framework to compute polycube mapping. Composed of a set of small cubes, a polycube well approximates the geometry of the free-form model yet possesses great regularity; therefore, it can serve as a nice parametric domain for free-form shape modeling and analysis. Generally, the more cubes are used to construct the polycube, the better the shape can be approximated and parameterized with less distortion. However, corner points of a polycube domain are singularities of this parametric representation, so a polycube domain having too many corners is undesirable. We develop an iterative algorithm to seek for the optimal polycube domain and mapping, with the constraint on using a restricted number of cubes (therefore restricted number of corner points). We also use our polycube mapping framework to compute an optimal common polycube domain for multiple objects simultaneously for lowly distorted consistent parameterization.

[1]  Chi-Wing Fu,et al.  A divide-and-conquer approach for automatic polycube map construction , 2009, Comput. Graph..

[2]  Stefan M. Wild,et al.  Benchmarking Derivative-Free Optimization Algorithms , 2009, SIAM J. Optim..

[3]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[4]  Hong Qin,et al.  Harmonic volumetric mapping for solid modeling applications , 2007, Symposium on Solid and Physical Modeling.

[5]  Daniel Cohen-Or,et al.  Dynamic harmonic fields for surface processing , 2009, Comput. Graph..

[6]  Paolo Cignoni,et al.  Almost Isometric Mesh Parameterization through Abstract Domains , 2010, IEEE Transactions on Visualization and Computer Graphics.

[7]  Vladislav Kraevoy,et al.  Cross-parameterization and compatible remeshing of 3D models , 2004, SIGGRAPH 2004.

[8]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[9]  Ying He,et al.  Hexahedral shell mesh construction via volumetric polycube map , 2010, SPM '10.

[10]  Peter Schröder,et al.  Consistent mesh parameterizations , 2001, SIGGRAPH.

[11]  Hong Qin,et al.  User-controllable polycube map for manifold spline construction , 2008, SPM '08.

[12]  J. Borwein,et al.  Two-Point Step Size Gradient Methods , 1988 .

[13]  Shi-Qing Xin,et al.  Editable polycube map for GPU-based subdivision surfaces , 2011, SI3D.

[14]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[15]  Neil A. Dodgson,et al.  Advances in Multiresolution for Geometric Modelling , 2005 .

[16]  Hong Qin,et al.  Surface Mapping Using Consistent Pants Decomposition , 2009, IEEE Transactions on Visualization and Computer Graphics.

[17]  M. J. D. Powell,et al.  Least Frobenius norm updating of quadratic models that satisfy interpolation conditions , 2004, Math. Program..

[18]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[19]  Charles Audet,et al.  A Pattern Search Filter Method for Nonlinear Programming without Derivatives , 2001, SIAM J. Optim..

[20]  Hong Qin,et al.  Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[22]  Adrien Bousseau,et al.  Real-time rough refraction , 2011, SI3D.

[23]  Szymon Rusinkiewicz,et al.  Proceedings of the Symposium on Geometry Processing , 2008 .

[24]  Timothy A. Davis,et al.  Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves , 2009, TOMS.

[25]  Sara McMains,et al.  ACM SIGGRAPH 2007 courses , 2007, SIGGRAPH 2007.

[26]  Hong Qin,et al.  Polycube splines , 2007, Comput. Aided Des..

[27]  Katya Scheinberg,et al.  On the local convergence of a derivative-free algorithm for least-squares minimization , 2010, Computational Optimization and Applications.

[28]  Valerio Pascucci,et al.  Spectral surface quadrangulation , 2006, SIGGRAPH 2006.

[29]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[30]  Hongchao Zhang,et al.  Adaptive Two-Point Stepsize Gradient Algorithm , 2001, Numerical Algorithms.

[31]  Xiaogang Jin,et al.  Mesh morphing using polycube-based cross-parameterization: Animating Geometrical Models , 2005 .

[32]  Hong Qin,et al.  Meshless thin-shell simulation based on global conformal parameterization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  William W. Hager,et al.  A New Active Set Algorithm for Box Constrained Optimization , 2006, SIAM J. Optim..

[34]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[35]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[36]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[37]  Xiaogang Jin,et al.  Mesh morphing using polycube‐based cross‐parameterization , 2005, Comput. Animat. Virtual Worlds.

[38]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[39]  W. Hager,et al.  The cyclic Barzilai-–Borwein method for unconstrained optimization , 2006 .

[40]  Zhao Yin,et al.  Feature-aligned harmonic volumetric mapping using MFS , 2010, Comput. Graph..

[41]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[42]  Paolo Cignoni,et al.  PolyCube-Maps , 2004, SIGGRAPH 2004.

[43]  Chi-Wing Fu,et al.  Dual Poisson-Disk Tiling: An Efficient Method for Distributing Features on Arbitrary Surfaces , 2008, IEEE Transactions on Visualization and Computer Graphics.

[44]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[45]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[46]  Charlie C. L. Wang,et al.  Automatic PolyCube-Maps , 2008, GMP.

[47]  Hong Qin,et al.  Meshless Harmonic Volumetric Mapping Using Fundamental Solution Methods , 2009, IEEE Transactions on Automation Science and Engineering.

[48]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.