Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions

Abstract Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra–Fredholm–Hammerstein integral equations. The properties of rationalized Haar functions are first presented. These properties together with the Newton–Cotes nodes and Newton–Cotes integration method are then utilized to reduce the solution of Volterra–Fredholm–Hammerstein integral equations to the solution of algebraic equations. The method is computationally attractive, and applications are demonstrated through illustrative examples.

[1]  Salih Yalçinbas Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations , 2002, Appl. Math. Comput..

[2]  G. Phillips,et al.  Theory and application of numerical analysis , 1973 .

[3]  Evaluation of analytic functions by generalized digital integration , 1985 .

[4]  Ian H. Sloan,et al.  A new collocation-type method for Hammerstein integral equations , 1987 .

[5]  N. Fine On the Walsh functions , 1949 .

[6]  M. Ohkita,et al.  An application of rationalized Haar functions to solution of linear differential equations , 1986 .

[7]  M. Ohkita,et al.  Application of the Haar functions to solution of differential equations , 1983 .

[8]  R. T. Lynch,et al.  Adaptive Haar Transform Video Bandwidth Reduction System For RPV' s , 1976, Optics & Photonics.

[9]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[10]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[11]  J. Webster,et al.  Wiley Encyclopedia of Electrical and Electronics Engineering , 2010 .

[12]  Mohsen Razzaghi,et al.  A Pseudospectral Method for Hammerstein Equations , 1996 .

[13]  Han Guo-qiang Asymptotic error expansion of a collocation-type method for Volterra-Hammerstein integral equations , 1993 .

[14]  V. Hutson Integral Equations , 1967, Nature.

[15]  L. Debnath,et al.  Walsh Functions and Their Applications , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Hermann Brunner,et al.  Implicitly linear collocation methods for nonlinear Volterra equations , 1992 .

[17]  R. Bellman,et al.  Quasilinearization and nonlinear boundary-value problems , 1966 .

[18]  Yadollah Ordokhani,et al.  Solution of differential equations via rationalized Haar functions , 2001 .

[19]  Masaaki Ohkita,et al.  An application of rationalized Haar functions to solution of linear partial differential equations , 1988 .

[20]  Gamal N. Elnagar,et al.  Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations , 1996 .