Plasticity of dendritic function

The various properties of neuronal dendrites--their morphology, active membrane and synaptic properties--all play important roles in determining the functional capabilities of central nervous system neurons. Because of their fundamental involvement in both synaptic integration and synaptic plasticity, the active dendritic properties are important for both neuronal information processing and storage. The active properties of dendrites are determined by the densities of voltage-gated ion channels located within the dendrites in addition to the biophysical characteristics of those channels. The real power of this system resides in the level of plasticity that is provided by the many forms of channel modulation known to exist in neurons. Indeed, voltage gated ion channel modulation shapes the active properties of neuronal dendrites to specific conditions, thus tailoring the functional role of the single neuron within its circuit.

[1]  D. Johnston,et al.  Distance-dependent modifiable threshold for action potential back-propagation in hippocampal dendrites. , 2003, Journal of neurophysiology.

[2]  Daniel Johnston,et al.  Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons , 2006, Pflügers Archiv.

[3]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[4]  M. Häusser,et al.  Dendritic coincidence detection of EPSPs and action potentials , 2001, Nature Neuroscience.

[5]  Mu-ming Poo,et al.  Bidirectional Changes in Spatial Dendritic Integration Accompanying Long-Term Synaptic Modifications , 2003, Neuron.

[6]  Niraj S. Desai,et al.  Plasticity in the intrinsic excitability of cortical pyramidal neurons , 1999, Nature Neuroscience.

[7]  D. Linden,et al.  The other side of the engram: experience-driven changes in neuronal intrinsic excitability , 2003, Nature Reviews Neuroscience.

[8]  Daniel Johnston,et al.  Regulation of back-propagating action potentials in hippocampal neurons , 1999, Current Opinion in Neurobiology.

[9]  Daniel Johnston,et al.  LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites , 2004, Nature Neuroscience.

[10]  Shigeo Watanabe,et al.  Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[12]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[13]  D. Johnston,et al.  Calcium–Calmodulin-Dependent Kinase II Modulates Kv4.2 Channel Expression and Upregulates Neuronal A-Type Potassium Currents , 2004, The Journal of Neuroscience.

[14]  Nicholas R Wall,et al.  Regulation of Dendritic Protein Synthesis by Miniature Synaptic Events , 2004, Science.

[15]  D. Johnston,et al.  Seizure-Induced Plasticity of h Channels in Entorhinal Cortical Layer III Pyramidal Neurons , 2004, Neuron.

[16]  Stephen R. Williams,et al.  Spatial compartmentalization and functional impact of conductance in pyramidal neurons , 2004, Nature Neuroscience.

[17]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[18]  J. Magee,et al.  State-Dependent Dendritic Computation in Hippocampal CA1 Pyramidal Neurons , 2006, The Journal of Neuroscience.

[19]  Ivan Soltesz,et al.  Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability , 2001, Nature Medicine.

[20]  E. Kandel,et al.  Increased Attention to Spatial Context Increases Both Place Field Stability and Spatial Memory , 2004, Neuron.

[21]  Karel Svoboda,et al.  Plasticity of calcium channels in dendritic spines , 2003, Nature Neuroscience.

[22]  Kazuhide Inoue,et al.  Production and Release of Neuroprotective Tumor Necrosis Factor by P2X7 Receptor-Activated Microglia , 2004, The Journal of Neuroscience.

[23]  B. Sakmann,et al.  Single Spine Ca2+ Signals Evoked by Coincident EPSPs and Backpropagating Action Potentials in Spiny Stellate Cells of Layer 4 in the Juvenile Rat Somatosensory Barrel Cortex , 2004, The Journal of Neuroscience.

[24]  R. Yuste,et al.  Linear Summation of Excitatory Inputs by CA1 Pyramidal Neurons , 1999, Neuron.

[25]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[26]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[27]  D. Linden,et al.  Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons , 2000, Nature Neuroscience.

[28]  Lucien T. Thompson,et al.  Trace Eyeblink Conditioning Increases CA1 Excitability in a Transient and Learning-Specific Manner , 1996, The Journal of Neuroscience.

[29]  A. Dubin,et al.  Neuronal Hyperpolarization-Activated Pacemaker Channels Drive Neuropathic Pain , 2003, The Journal of Neuroscience.

[30]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[31]  The other half of Hebb: K+ channels and the regulation of neuronal excitability in the hippocampus. , 2002, Molecular neurobiology.

[32]  Matthew F. Nolan,et al.  A Behavioral Role for Dendritic Integration HCN1 Channels Constrain Spatial Memory and Plasticity at Inputs to Distal Dendrites of CA1 Pyramidal Neurons , 2004, Cell.

[33]  K. Holthoff,et al.  Single‐shock LTD by local dendritic spikes in pyramidal neurons of mouse visual cortex , 2004, The Journal of physiology.

[34]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[35]  N. Spruston,et al.  Properties of slow, cumulative sodium channel inactivation in rat hippocampal CA1 pyramidal neurons. , 1999, Biophysical journal.

[36]  H. Tsubokawa Control of Na+ spike backpropagation by intracellular signaling in the pyramidal neuron dendrites , 2000, Molecular Neurobiology.

[37]  Jeffrey C Magee,et al.  Sleep Deprivation Causes Behavioral, Synaptic, and Membrane Excitability Alterations in Hippocampal Neurons , 2003, The Journal of Neuroscience.

[38]  Matthew F. Nolan,et al.  The Hyperpolarization-Activated HCN1 Channel Is Important for Motor Learning and Neuronal Integration by Cerebellar Purkinje Cells , 2003, Cell.

[39]  M. Womack,et al.  Dendritic Control of Spontaneous Bursting in Cerebellar Purkinje Cells , 2004, The Journal of Neuroscience.

[40]  D. Johnston,et al.  Acquired Dendritic Channelopathy in Temporal Lobe Epilepsy , 2004, Science.

[41]  B. Sakmann,et al.  Dendritic mechanisms underlying the coupling of the dendritic with the axonal action potential initiation zone of adult rat layer 5 pyramidal neurons , 2001, The Journal of physiology.

[42]  J. Sweatt,et al.  Mitogen-activated protein kinases in synaptic plasticity and memory , 2004, Current Opinion in Neurobiology.

[43]  G. Stuart,et al.  Voltage- and Site-Dependent Control of the Somatic Impact of Dendritic IPSPs , 2003, The Journal of Neuroscience.

[44]  William A Catterall,et al.  Transmitter Modulation of Slow, Activity-Dependent Alterations in Sodium Channel Availability Endows Neurons with a Novel Form of Cellular Plasticity , 2003, Neuron.

[45]  O. Steward,et al.  Compartmentalized Synthesis and Degradation of Proteins in Neurons , 2003, Neuron.

[46]  P. Jonas,et al.  Functional Conversion Between A-Type and Delayed Rectifier K+ Channels by Membrane Lipids , 2004, Science.

[47]  G. Shepherd,et al.  Emerging rules for the distributions of active dendritic conductances , 2002, Nature Reviews Neuroscience.

[48]  D. Johnston,et al.  Slow Recovery from Inactivation of Na+ Channels Underlies the Activity-Dependent Attenuation of Dendritic Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1997, The Journal of Neuroscience.

[49]  Michael Häusser,et al.  Membrane potential bistability is controlled by the hyperpolarization‐activated current IH in rat cerebellar Purkinje neurons in vitro , 2002, The Journal of physiology.

[50]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[51]  W. K. Cullen,et al.  Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty , 2003, Nature Neuroscience.

[52]  Ulf Bickmeyer,et al.  Differential modulation of Ih by 5‐HT receptors in mouse CA1 hippocampal neurons , 2002, The European journal of neuroscience.