The effects of forest structure on the risk of wind damage at a landscape level in a boreal forest ecosystem

Abstract• The aim of this work was to analyze how the forest structure affects the risk of wind damage at the landscape level in a boreal forest.• This was done by employing: (i) Monte Carlo simulation technique for generating landscapes with different age class distributions, proportions of open areas (gaps), and tree species composition; and (ii) a mechanistic wind damage model, HWIND, for predicting the critical wind speeds at downwind stand edges of open areas (gaps) for risk consideration. The level of risk of wind damage observed at the landscape level was significantly affected by the presence of gaps and old stands. Even a slight increase in the proportion of gap areas or older stands had a significant impact on the total length of edges at risk. As a comparison, variation in species composition (Scots pine and/or Norway spruce) had much smaller impact on the risk of damage.• In conclusion, the effects of forest structure on the risk of wind damage should especially be considered by forest managers in day-to-day forest planning in order to reduce the risk of wind damage both at the stand and landscape level.Résumé• L’objectif de ce travail était d’analyser comment la structure forestière affecte le risque de dommages causés par le vent à l’échelle du paysage dans une forêt boréale.• C’est objectif a été atteint par l’emploi : (i) de la technique de simulation de Monte Carlo pour générer des paysages de différentes distributions de classe d’âge, de proportions des zones ouvertes (trouées), et de composition des espèces d’arbres ; et (ii) d’un modèle mécaniste de dommages causés par le vent, HWIND, pour la prédiction des vitesses de vent critiques au niveau des lisières sous le vent des zones ouvertes (trouées) en relation avec les risques. Le niveau de risque de dommages causés par le vent observé à l’échelle du paysage a été significativement affecté par la présence de trouées et de vieux peuplements. Une augmentation même légère dans la proportion de trouées ou de vieux peuplements a eu un impact significatif sur la longueur totale des lisières à risque. À titre de comparaison, la variation dans la composition des espèces (pin sylvestre et/ou épicéa) a eu beaucoup moins d’impact sur le risque de dommages.• En conclusion, les effets de la structure de la forêt sur le risque de dommages causés par le vent devraient être examinées en particulier par les gestionnaires forestiers pour une planification des opérations forestière au jour le jour, afin de réduire le risque de dommages causés par le vent à la fois au niveau du peuplement et au niveau du paysage.

[1]  C. Quine Estimation of mean wind climate and probability of strong winds for wind risk assessment. , 2000 .

[2]  Ola Sallnäs,et al.  WINDA—a system of models for assessing the probability of wind damage to forest stands within a landscape , 2004 .

[3]  Petri Pellikka,et al.  FOREST STAND CHARACTERISTICS AND WIND AND SNOW INDUCED FOREST DAMAGE IN BOREAL FOREST , 2003 .

[4]  Ari Venäläinen,et al.  Influence of clear-cutting on the risk of wind damage at forest edges , 2004 .

[5]  H. Peltola,et al.  Mechanical stability of Scots pine, Norway spruce and birch: an analysis of tree-pulling experiments in Finland , 2000 .

[6]  Heli Peltola,et al.  Integration of component models from the tree, stand and regional levels to assess the risk of wind damage at forest margins , 2000 .

[7]  H. Peltola,et al.  A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch , 1999 .

[8]  J. A. Petty,et al.  Factors influencing stem breakage of conifers in high winds , 1985 .

[9]  B. Gardiner,et al.  Comparison of two models for predicting the critical wind speeds required to damage coniferous trees , 2000 .

[10]  B. Courbaud,et al.  Development of an individual tree-based mechanical model to predict wind damage within forest stands , 2004 .

[11]  R. Pielke,et al.  Potential climatic impacts of vegetation change: A regional modeling study , 1996 .

[12]  Elon S. Verry,et al.  Predicting Wind-Caused Mortality in Strip-cut Stands of Peatland Black Spruce , 1978 .

[13]  Stephen J. Mitchell,et al.  Portability of stand-level empirical windthrow risk models , 2005 .

[14]  H. Ravn Expansion of the populations of Ips typographus (L.) (Coleoptera, Scolytidae) and their local dispersal following gale disaster in Denmark1 , 2009 .

[15]  H. Peltola,et al.  The effects of fragmentation on the susceptibility of a boreal forest ecosystem to wind damage , 2009 .

[16]  J. Petty,et al.  Stability of Coniferous Tree Stems in Relation to Damage by Snow , 1981 .

[17]  Ari Venäläinen,et al.  Simulations of the influence of clear-cutting on the risk of wind damage on a regional scale over a 20-year period , 2006 .

[18]  K. Mcnaughton Micrometeorology of shelter belts and forest edges , 1989 .

[19]  H. Peltola,et al.  Impacts of forest landscape structure and management on timber production and carbon stocks in the boreal forest ecosystem under changing climate , 2007 .

[20]  B. Gardiner,et al.  Field and wind tunnel assessments of the implications of respacing and thinning for tree stability , 1997 .

[21]  M. P. Coutts,et al.  Components of tree stability in Sitka Spruce on peaty gley soil , 1986 .

[22]  M. Raupach,et al.  Windthrow [and Discussion] , 1989 .

[23]  Timo Pukkala,et al.  The use of heuristic optimization in risk management of wind damage in forest planning , 2007 .

[24]  Barry Gardiner,et al.  Wind flows and forces in a model spruce forest , 1994 .

[25]  Ari Venäläinen,et al.  Simulations of the influence of forest management on wind climate on a regional scale , 2004 .