Adaptive RBF-FD method for elliptic problems with point singularities in 2D
暂无分享,去创建一个
[1] Oleg Davydov,et al. On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation , 2011, Comput. Math. Appl..
[2] L. Wahlbin,et al. Local behavior in finite element methods , 1991 .
[3] Marc Duflot,et al. Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..
[4] Rüdiger Verfürth,et al. A posteriori error estimators for stationary convection–diffusion problems: a computational comparison , 2000 .
[5] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[6] M. Birman,et al. PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .
[7] Bengt Fornberg,et al. A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.
[8] William F. Mitchell,et al. A collection of 2D elliptic problems for testing adaptive grid refinement algorithms , 2013, Appl. Math. Comput..
[9] Per-Olof Persson,et al. A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..
[10] Robert Schaback,et al. Error bounds for kernel-based numerical differentiation , 2016, Numerische Mathematik.
[11] Bengt Fornberg,et al. Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..
[12] Oleg Davydov,et al. Adaptive meshless centres and RBF stencils for Poisson equation , 2011, J. Comput. Phys..
[13] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .