Adaptive RBF-FD method for elliptic problems with point singularities in 2D

We describe and test numerically an adaptive meshless generalized finite difference method based on radial basis functions that competes well with the finite element method on standard benchmark problems with reentrant corners of the boundary, sharp peaks and rapid oscillations in the neighborhood of an isolated point. This is achieved thanks to significant improvements introduced into the earlier algorithms of [Oleg Davydov and Dang~Thi Oanh, Adaptive meshless centers and RBF stencils for Poisson equation, Journal of Computational Physics, 230:287--304, 2011], including a new error indicator of Zienkiewicz-Zhu type.

[1]  Oleg Davydov,et al.  On the optimal shape parameter for Gaussian radial basis function finite difference approximation of the Poisson equation , 2011, Comput. Math. Appl..

[2]  L. Wahlbin,et al.  Local behavior in finite element methods , 1991 .

[3]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[4]  Rüdiger Verfürth,et al.  A posteriori error estimators for stationary convection–diffusion problems: a computational comparison , 2000 .

[5]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[6]  M. Birman,et al.  PIECEWISE-POLYNOMIAL APPROXIMATIONS OF FUNCTIONS OF THE CLASSES $ W_{p}^{\alpha}$ , 1967 .

[7]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[8]  William F. Mitchell,et al.  A collection of 2D elliptic problems for testing adaptive grid refinement algorithms , 2013, Appl. Math. Comput..

[9]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[10]  Robert Schaback,et al.  Error bounds for kernel-based numerical differentiation , 2016, Numerische Mathematik.

[11]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[12]  Oleg Davydov,et al.  Adaptive meshless centres and RBF stencils for Poisson equation , 2011, J. Comput. Phys..

[13]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .