Computational Algebraic Geometry and Commutative Algebra : Cortona 1991

Part I. Open problems and exposition of Groebner bases: 1. What can be computed in algebraic geometry? Dave Bayer and David Mumford 2. Open problems in computational algebraic geometry David Eisenbud Part II. Surveys: 3. A computer assisted project: classification of algebras Th. Dana-Picard and M. Schaps 4. Systems of algebraic equations (algorithms and complexity) D. Lazard 5. Points in affine and projective spaces Teo Mora and Lorenzo Robbiano 6. Constructions in commutative algebra Wolmer V. Vasconcelos Part III. Research papers: 7. Groebner bases and extensions of scalars Dave Bayer, Andre Galligo and Mike Stillman 8. La determination des point insoles et de la dimension d'une variete algebrique pent se faire en temps polynomial Marc Giusti and Joos Heintz 9. Arithmetically Cohen-Macaulay curves cut out by quadrics Sheldon Katz 10. Sparse elimination theory Bernd Sturmfels.