Robustness of XFEM Method for the Simulation of Cracks Propagation in Fracture Mechanics Problems

In the present paper a numerical sensitivity analysis is presented with the aim to assess the effectiveness of the X-FEM method for fracture mechanics applications. Different test cases have been adopted for the numerical analyses to point out the X-FEM method behavior in 2-D and 3-D elastic and elasto-plastic conditions. Comparisons with a standard ductile damage model have been carried out to highlight the advantages of the XFEM method in terms of mesh size and shape independency when simulating cracks propagation.

[1]  Bhushan Lal Karihaloo,et al.  Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .

[2]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[3]  Fracture Mechanics Study of a Compact Tension Specimen Using Abaqus/CAE , 2011 .

[4]  Eugenio Giner,et al.  An Abaqus implementation of the extended finite element method , 2009 .

[5]  M.R.M. Aliha,et al.  On fracture initiation angle near bi-material notches – Effects of first non-singular stress term , 2014 .

[6]  MirMilad Mirsayar,et al.  Mixed mode fracture analysis using extended maximum tangential strain criterion , 2015 .

[7]  Günther Meschke,et al.  Crack propagation criteria in the framework of X‐FEM‐based structural analyses , 2007 .

[8]  Bhushan Lal Karihaloo,et al.  XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials , 2004 .

[9]  E. Verron,et al.  Stress analysis around crack tips in finite strain problems using the eXtended finite element method , 2005 .

[10]  Bhushan Lal Karihaloo,et al.  Direct evaluation of accurate coefficients of the linear elastic crack tip asymptotic field , 2003 .

[11]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[12]  Stefano Mariani,et al.  Extended finite element method for quasi‐brittle fracture , 2003 .

[13]  MirMilad Mirsayar,et al.  On fracture of kinked interface cracks – The role of T-stress , 2014 .

[14]  Toshio Nagashima,et al.  Stress intensity factor analysis of interface cracks using X‐FEM , 2003 .

[15]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[16]  T. Belytschko,et al.  Extended finite element method for cohesive crack growth , 2002 .

[17]  N. Moës,et al.  Improved implementation and robustness study of the X‐FEM for stress analysis around cracks , 2005 .

[18]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[19]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[20]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[21]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[22]  Salim Belouettar,et al.  Thermo-anisotropic crack propagation by XFEM , 2015 .

[23]  F. Berto,et al.  Strain-based criteria for mixed-mode fracture of polycrystalline graphite , 2016 .

[24]  Uwe Zerbst,et al.  About the fatigue crack propagation threshold of metals as a design criterion – A review , 2016 .