Using clustering methods in geospatial information systems

Spatial clustering is the process of grouping similar objects based on their distance, connectivity, or relative density in space, which has been employed for spatial analysis over years. To be able to integrate the proper clustering methods in geospatial information systems, two problems are discussed in the paper: how to select a proper spatial clustering methods and how to implement the clustering method in GIS. In this paper, we will give a detailed discussion on different types of clustering methods. Analysis on advantages and limitations for some classical clustering methods are given. Then we will discuss some issues of using the spatial clustering methods in the geospatial information systems.

[1]  Jiong Yang,et al.  STING: A Statistical Information Grid Approach to Spatial Data Mining , 1997, VLDB.

[2]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[3]  Howard J. Hamilton,et al.  Clustering Spatial Data in The Presence of Obstacles , 2005, Int. J. Artif. Intell. Tools.

[4]  Padhraic Smyth,et al.  Probabilistic clustering of extratropical cyclones using regression mixture models , 2007 .

[5]  Salvatore Sessa,et al.  Extended fuzzy C-means clustering algorithm for hotspot events in spatial analysis , 2008, Int. J. Hybrid Intell. Syst..

[6]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[7]  Anthony K. H. Tung,et al.  Constraint-based clustering in large databases , 2001, ICDT.

[8]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[9]  Jiawei Han,et al.  Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.

[10]  Albert K. W. Yeung,et al.  Concepts And Techniques Of Geographic Information Systems , 2002 .

[11]  Shin'ichi Satoh,et al.  The SR-tree: an index structure for high-dimensional nearest neighbor queries , 1997, SIGMOD '97.

[12]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[13]  Chi-Hoon Lee,et al.  Clustering spatial data when facing physical constraints , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[14]  Uzay Kaymak,et al.  Fuzzy clustering with volume prototypes and adaptive cluster merging , 2002, IEEE Trans. Fuzzy Syst..

[15]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[16]  Laks V. S. Lakshmanan,et al.  Constraint-Based Multidimensional Data Mining , 1999, Computer.

[17]  Fahui Wang,et al.  A Scale-Space Clustering Method: Mitigating the Effect of Scale in the Analysis of Zone-Based Data , 2008 .

[18]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[19]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[20]  Thomas R. Gruber,et al.  A Translation Approach to Portable Ontologies , 1993 .

[21]  Howard J. Hamilton,et al.  DBRS: A Density-Based Spatial Clustering Method with Random Sampling , 2003, PAKDD.

[22]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[23]  Hans-Peter Kriegel,et al.  Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications , 1998, Data Mining and Knowledge Discovery.

[24]  Ickjai Lee,et al.  AUTOCLUST+: Automatic Clustering of Point-Data Sets in the Presence of Obstacles , 2000, TSDM.

[25]  Jaakko Astola,et al.  Clustering based region growing algorithm for color image segmentation , 1997, Proceedings of 13th International Conference on Digital Signal Processing.

[26]  Frank Klawonn,et al.  What Is Fuzzy about Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzifier , 2003, IDA.

[27]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[28]  Mark Gahegan,et al.  Proximity Operators for Qualitative Spatial Reasoning , 1995, COSIT.

[29]  Chi-Hoon. Lee Density-based clustering of spatial data in the presence of physical constraints , 2002 .

[30]  Yue Zhao,et al.  A Neighborhood-Based Clustering Algorithm , 2005, PAKDD.

[31]  Tian Zhang,et al.  BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.

[32]  Emmanuel Stefanakis,et al.  NET‐DBSCAN: clustering the nodes of a dynamic linear network , 2007, Int. J. Geogr. Inf. Sci..

[33]  Howard J. Hamilton,et al.  Density-Based Spatial Clustering in the Presence of Obstacles and Facilitators , 2004, PKDD.

[34]  Geoffrey M. Jacquez,et al.  Spatial Cluster Analysis , 2008 .

[35]  Ickjai Lee,et al.  AUTOCLUST: Automatic Clustering via Boundary Extraction for Mining Massive Point-Data Sets , 2000 .

[36]  Claire Cardie,et al.  Clustering with Instance-Level Constraints , 2000, AAAI/IAAI.

[37]  Anthony K. H. Tung,et al.  Spatial clustering in the presence of obstacles , 2001, Proceedings 17th International Conference on Data Engineering.

[38]  Anthony K. H. Tung,et al.  Spatial clustering methods in data mining : A survey , 2001 .