Tight two-level convergence of Linear Parareal and MGRIT: Extensions and implications in practice

Two of the most popular parallel-in-time methods are Parareal and multigrid-reduction-in-time (MGRIT). Recently, a general convergence theory was developed in Southworth (2019) for linear two-level MGRIT/Parareal that provides necessary and sufficient conditions for convergence, with tight bounds on worst-case convergence factors. This paper starts by providing a new and simplified analysis of linear error and residual propagation of Parareal, wherein the norm of error or residual propagation is given by one over the minimum singular value of a certain block bidiagonal operator. New discussion is then provided on the resulting necessary and sufficient conditions for convergence that arise by appealing to block Toeplitz theory as in Southworth (2019). Practical applications of the theory are discussed, and the convergence bounds demonstrated to predict convergence in practice to high accuracy on two standard linear hyperbolic PDEs: the advection(-diffusion) equation, and the wave equation in first-order form.

[1]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[2]  Daniel Ruprecht,et al.  Convergence of Parareal with spatial coarsening , 2014 .

[3]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[4]  N. Anders Petersson,et al.  Two-Level Convergence Theory for Multigrid Reduction in Time (MGRIT) , 2017, SIAM J. Sci. Comput..

[5]  Robert D. Falgout,et al.  Parallel time integration with multigrid , 2013, SIAM J. Sci. Comput..

[6]  Robert D. Falgout,et al.  Multilevel Convergence Analysis of Multigrid-Reduction-in-Time , 2018, SIAM J. Sci. Comput..

[7]  Martin J. Gander,et al.  Nonlinear Convergence Analysis for the Parareal Algorithm , 2008 .

[8]  László Losonczi,et al.  Eigenvalues and eigenvectors of some tridiagonal matrices , 1992 .

[9]  Tao Zhou,et al.  Convergence Analysis for Three Parareal Solvers , 2015, SIAM J. Sci. Comput..

[10]  J. Lions,et al.  Résolution d'EDP par un schéma en temps « pararéel » , 2001 .

[11]  Paolo Tilli,et al.  Asymptotic Spectra of Hermitian Block Toeplitz Matrices and Preconditioning Results , 2000, SIAM J. Matrix Anal. Appl..

[12]  Shu-Lin Wu,et al.  Convergence analysis of some second-order parareal algorithms , 2015 .

[13]  M. Hochstenbach,et al.  Generalized Davidson and multidirectional-type methods for the generalized singular value decomposition , 2017, 1705.06120.

[14]  Guillaume Bal,et al.  On the Convergence and the Stability of the Parareal Algorithm to Solve Partial Differential Equations , 2005 .

[15]  C. Fonseca,et al.  Eigenpairs of a family of tridiagonal matrices: three decades later , 2020, Acta Mathematica Hungarica.

[16]  Martin J. Gander,et al.  On the Superlinear and Linear Convergence of the Parareal Algorithm , 2007, CSE 2007.

[17]  Stephanie Friedhoff,et al.  On “Optimal” h‐independent convergence of Parareal and multigrid‐reduction‐in‐time using Runge‐Kutta time integration , 2020, Numerical Linear Algebra with Applications.

[18]  Ben S. Southworth,et al.  Necessary Conditions and Tight Two-level Convergence Bounds for Parareal and Multigrid Reduction in Time , 2018, SIAM J. Matrix Anal. Appl..

[19]  Thomas A. Manteuffel,et al.  A Boundary Functional for the Least-Squares Finite- Element Solution of Neutron Transport Problems , 1999, SIAM J. Numer. Anal..

[20]  S. Serra,et al.  Spectral and Computational Analysis of Block Toeplitz Matrices Having Nonnegative Definite Matrix-Valued Generating Functions , 1999 .