On a rational differential quadrature method in irregular domains for problems with boundary layers

Abstract A rational differential quadrature method in irregular domains (RDQMID) is investigated to deal with a kind of singularly perturbed problems with boundary layers. Through a transformation, the boundary layer, which may be not straight, is transformed into a segment of a line parallel to one of the Cartesian axes. The rational differential quadrature method (RDQM) is applied to discretize the governing equation. Finally, a direct expansion method of the boundary conditions (DEMBC) is raised to deal with the boundary conditions. Numerical experiments show that RDQMID is of high accuracy, efficiency and easy to programme.

[1]  Lloyd N. Trefethen,et al.  A Rational Spectral Collocation Method with Adaptively Transformed Chebyshev Grid Points , 2006, SIAM J. Sci. Comput..

[2]  JohnM . Miller,et al.  Robust Computational Techniques for Boundary Layers , 2000 .

[3]  Hakki Duru,et al.  Difference schemes for the singularly perturbed Sobolev periodic boundary problem , 2004, Appl. Math. Comput..

[4]  B. L. Buzbee,et al.  The direct solution of the discrete Poisson equation on irregular regions , 1970 .

[5]  C. Schneider,et al.  Some new aspects of rational interpolation , 1986 .

[6]  F. Fenton,et al.  Modeling wave propagation in realistic heart geometries using the phase-field method. , 2005, Chaos.

[7]  Xionghua Wu,et al.  Differential quadrature domain decomposition method for problems on a triangular domain , 2005 .

[8]  Richard Pasquetti,et al.  A Spectral Embedding Method Applied to the Advection-Diffusion Equation , 1996 .

[9]  Christoph Börgers,et al.  Domain imbedding methods for the Stokes equations , 1990 .

[10]  Jean-Paul Berrut,et al.  Exponential convergence of a linear rational interpolant between transformed Chebyshev points , 1999, Math. Comput..

[11]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[12]  James P. Keener,et al.  An immersed interface method for anisotropic elliptic problems on irregular domains in 2D , 2005 .

[13]  Zhimin Zhang,et al.  Finite element superconvergence on Shishkin mesh for 2-D convection-diffusion problems , 2003, Math. Comput..

[14]  Víctor M. Pérez-García,et al.  Spectral Methods for Partial Differential Equations in Irregular Domains: The Spectral Smoothed Boundary Method , 2006, SIAM J. Sci. Comput..

[15]  Adrian Alexandrescu,et al.  Mapped Chebyshev pseudospectral method for the study of multiple scale phenomena , 2007, Comput. Phys. Commun..

[16]  Prabir Daripa,et al.  On a Fourier Method of Embedding Domains Using an Optimal Distributed Control , 2003, Numerical Algorithms.

[17]  Víctor M. Pérez-García,et al.  Spectral smoothed boundary methods: The role of external boundary conditions , 2006 .

[18]  Lubin G. Vulkov,et al.  Singularly perturbed differential equations with discontinuous coefficients and concentrated factors , 2004, Appl. Math. Comput..

[19]  H. Mittelmann,et al.  Recent Developments in Barycentric Rational Interpolation , 2005 .

[20]  Jesús Vigo-Aguiar,et al.  An efficient numerical method for singular perturbation problems , 2006 .