The support vector machine under test

[1]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[2]  Gunnar Rätsch,et al.  Soft Margins for AdaBoost , 2001, Machine Learning.

[3]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[4]  Davide Anguita,et al.  Evaluating the Generalization Ability of Support Vector Machines through the Bootstrap , 2000, Neural Processing Letters.

[5]  Johan A. K. Suykens,et al.  Benchmarking Least Squares Support Vector Machine Classifiers , 2004, Machine Learning.

[6]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[7]  Torsten Hothorn,et al.  Double-Bagging: Combining Classifiers by Bootstrap Aggregation , 2002, Pattern Recognit..

[8]  Peter Auer,et al.  Reducing Communication for Distributed Learning in Neural Networks , 2002, ICANN.

[9]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[10]  J. Friedman Stochastic gradient boosting , 2002 .

[11]  Hava T. Siegelmann,et al.  Support Vector Clustering , 2002, J. Mach. Learn. Res..

[12]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[13]  Eddy Mayoraz Multiclass Classification with Pairwise Coupled Neural Networks or Support Vector Machines , 2001, ICANN.

[14]  Liva Ralaivola,et al.  Incremental Support Vector Machine Learning: A Local Approach , 2001, ICANN.

[15]  K. Bennett,et al.  Optimization Approaches to Semi-Supervised Learning , 2001 .

[16]  Kurt Hornik,et al.  Artificial Neural Networks — ICANN 2001 , 2001, Lecture Notes in Computer Science.

[17]  David R. Musicant,et al.  Robust Linear and Support Vector Regression , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Hélène Paugam-Moisy,et al.  A new multi-class SVM based on a uniform convergence result , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[19]  Pascal Vincent,et al.  A Neural Support Vector Network architecture with adaptive kernels , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.

[20]  Michael E. Tipping The Relevance Vector Machine , 1999, NIPS.

[21]  Douglas M. Bates,et al.  Programming With Data: A Guide to the S Language , 1999, Technometrics.

[22]  Ralf Herbrich,et al.  Bayes Point Machines: Estimating the Bayes Point in Kernel Space , 1999 .

[23]  L. Breiman Arcing classifier (with discussion and a rejoinder by the author) , 1998 .

[24]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[25]  Christopher M. Bishop,et al.  Neural networks and machine learning , 1998 .

[26]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[27]  Jason Weston,et al.  Multi-Class Support Vector Machines , 1998 .

[28]  Radford M. Neal Assessing Relevance determination methods using DELVE , 1998 .

[29]  Brian D. Ripley,et al.  Modern Applied Statistics with S-Plus Second edition , 1997 .

[30]  B. Ripley,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[31]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[32]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[33]  Ron Kohavi,et al.  Bias Plus Variance Decomposition for Zero-One Loss Functions , 1996, ICML.

[34]  Lutz Prechelt,et al.  Some notes on neural learning algorithm benchmarking , 1995, Neurocomputing.

[35]  Thomas G. Dietterich,et al.  Error-Correcting Output Coding Corrects Bias and Variance , 1995, ICML.

[36]  Cao Feng,et al.  STATLOG: COMPARISON OF CLASSIFICATION ALGORITHMS ON LARGE REAL-WORLD PROBLEMS , 1995 .

[37]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[38]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[39]  Lutz Prechelt,et al.  PROBEN 1 - a set of benchmarks and benchmarking rules for neural network training algorithms , 1994 .

[40]  J. Freidman,et al.  Multivariate adaptive regression splines , 1991 .