Review of Robust Aerodynamic Design Optimization for Air Vehicles

The ever-increasing demands for risk-free, resource-efficient and environment-friendly air vehicles motivate the development of advanced design methodology. As a particularly promising design methodology considering uncertainties, robust aerodynamic design optimization (RADO) is capable of providing robust and reliable aerodynamic configuration and reducing cost under probable uncertainties in the flight envelop and all life cycle of air vehicle. However, the major challenges including high computational cost with increasing dimensionality of uncertainty and complex RADO procedure hinder the wider application of RADO. In this paper, the complete RADO procedure, i.e., uncertainty modeling, establishment of uncertainty quantification approach as well as robust optimization subject to reliability constraints under uncertainty, is elaborated. Systematic reviews of RADO methodology including uncertainty modeling methods, comprehensive uncertainty quantification approaches, and robust optimization methods are provided. Further, this paper presents a brief survey of the main applications of RADO in the aerodynamic design of transonic flow and natural-laminar-flow, and discusses the application prospects of RADO methodology for air vehicles. The detailed statement of the paper indicates the intention, i.e., to present the state of the art in RADO methodology, to highlight the key techniques and primary challenges in RADO, and to provide the beneficial directions for future researches.

[1]  Sangook Jun,et al.  Robust Design Optimization of Unmanned Aerial Vehicle Coaxial Rotor Considering Operational Uncertainty , 2011 .

[2]  David W. Zingg,et al.  Aerodynamic Optimization Under a Range of Operating Conditions , 2006 .

[3]  Onur Köksoy,et al.  Multiresponse robust design: Mean square error (MSE) criterion , 2006, Appl. Math. Comput..

[4]  T. Pulliam,et al.  Multipoint and Multi-Objective Aerodynamic Shape Optimization , 2002 .

[5]  Marin D. Guenov,et al.  Novel Uncertainty Propagation Method for Robust Aerodynamic Design , 2011 .

[6]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[7]  A. Ismail-Yahaya,et al.  Multiobjective robust design using physical programming , 2002 .

[8]  Quan Li,et al.  Aerodynamic optimization of rotor airfoil based on multi-layer hierarchical constraint method , 2016 .

[9]  Randall D. Manteufel,et al.  Evaluating the convergence of latin hypercube sampling , 2000 .

[10]  Xiaoping Du Reliability‐based design optimization with dependent interval variables , 2012 .

[11]  J. Samareh Survey of Shape Parameterization Techniques for High-Fidelity Multidisciplinary Shape Optimization , 2001 .

[12]  Scott Ferson,et al.  Model Validation under Both Aleatory and Epistemic Uncertainty. , 2007 .

[13]  Xiaoping Du,et al.  Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design , 2004, DAC 2002.

[14]  Mehrdad Tamiz,et al.  Goal programming for decision making: An overview of the current state-of-the-art , 1998, Eur. J. Oper. Res..

[15]  Jérôme Morio,et al.  Importance sampling: how to approach the optimal density? , 2010 .

[16]  Huyse Luc,et al.  Robust airfoil optimization to achieve consistent drag reduction over a mach range , 2001 .

[17]  Manolis Papadrakakis,et al.  Reliability-based structural optimization using neural networks and Monte Carlo simulation , 2002 .

[18]  Costas Papadimitriou,et al.  Aerodynamic shape optimization for minimum robust drag and lift reliability constraint , 2016 .

[19]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[20]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[21]  Khachik Sargsyan,et al.  Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection , 2014, J. Comput. Phys..

[22]  Irene M. Gregory,et al.  A New Approach to Aircraft Robust Performance Analysis , 1996 .

[23]  Koji Shimoyama,et al.  Uncertainty Quantification by the Nonintrusive Polynomial Chaos Expansion with an Adjustment Strategy , 2016 .

[24]  Niels C. Lind,et al.  Methods of structural safety , 2006 .

[25]  Carlos A. Coello Coello,et al.  Multi-objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges , 2015 .

[26]  Jon C. Helton,et al.  Uncertainty and sensitivity analysis techniques for use in performance assessment for radioactive waste disposal , 1993 .

[27]  Wilson H. Tang,et al.  Optimal Importance‐Sampling Density Estimator , 1992 .

[28]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[29]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[30]  Zissimos P. Mourelatos,et al.  Robust Design Using Preference Aggregation Methods , 2003, DAC 2003.

[31]  Yi Zhang,et al.  An Approximation Approach to General Robustness Assessment for Multidisciplinary Systems , 2010, J. Comput. Inf. Sci. Eng..

[32]  G. Schuëller,et al.  A critical appraisal of methods to determine failure probabilities , 1987 .

[33]  Aicke Hinrichs Optimal importance sampling for the approximation of integrals , 2010, J. Complex..

[34]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[35]  Arie Tzvieli Possibility theory: An approach to computerized processing of uncertainty , 1990, J. Am. Soc. Inf. Sci..

[36]  Roger G. Ghanem,et al.  Basis adaptation in homogeneous chaos spaces , 2014, J. Comput. Phys..

[37]  D. Zingg,et al.  Aerodynamic Shape Optimization for Natural Laminar Flow Using a Discrete-Adjoint Approach , 2015 .

[38]  Eugenio Oñate,et al.  Active transonic aerofoil design optimization usingrobust multiobjective evolutionary algorithms , 2011 .

[39]  R. Caflisch,et al.  Quasi-Monte Carlo integration , 1995 .

[40]  R. Liem,et al.  Expected drag minimization for aerodynamic design optimization based on aircraft operational data , 2017 .

[41]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[42]  William Feller,et al.  An Introduction to Probability Theory and Its Applications, Vol. 2 , 1967 .

[43]  Raymond M. Hicks,et al.  An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers , 1991 .

[44]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[45]  Wei Chen,et al.  Quality utility : a Compromise Programming approach to robust design , 1999 .

[46]  Pedro Paulo Balestrassi,et al.  Robust parameter optimization based on multivariate normal boundary intersection , 2016, Comput. Ind. Eng..

[47]  Eduardo Saliby,et al.  An empirical evaluation of sampling methods in risk analysis simulation: quasi-Monte Carlo, descriptive sampling, and latin hypercube sampling , 2002, Proceedings of the Winter Simulation Conference.

[48]  Rong Chen,et al.  A Theoretical Framework for Sequential Importance Sampling with Resampling , 2001, Sequential Monte Carlo Methods in Practice.

[49]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[50]  Wu Li,et al.  Options for Robust Airfoil Optimization under Uncertainty , 2002 .

[51]  Kozo Fujii,et al.  Multi-Objective Six Sigma Approach Applied to Robust Airfoil Design for Mars Airplane , 2007 .

[52]  V. Bowman On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives , 1976 .

[53]  Antony Jameson,et al.  Robust Airfoil Optimization Using Maximum Expected Value and Expected Maximum Value Approaches , 2012 .

[54]  Pedro Paulo Balestrassi,et al.  A normal boundary intersection approach to multiresponse robust optimization of the surface roughness in end milling process with combined arrays , 2014 .

[55]  Luc Huyse,et al.  Aerodynamic shape optimization of two-dimensional airfoils under uncertain conditions , 2001 .

[56]  Ke Zhao,et al.  Robust design of NLF airfoils , 2013 .

[57]  Boris S. Dobronets,et al.  Numerical Probabilistic Analysis under Aleatory and Epistemic Uncertainty , 2013, Reliab. Comput..

[58]  Jon C. Helton,et al.  An exploration of alternative approaches to the representation of uncertainty in model predictions , 2003, Reliab. Eng. Syst. Saf..

[59]  I. Elishakoff,et al.  Combination of probabilistic and convex models of uncertainty when scarce knowledge is present on acoustic excitation parameters , 1993 .

[60]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[61]  Sergey Peigin,et al.  Multiconstrained aerodynamic design of business jet by CFD driven optimization tool , 2008 .

[62]  Yongsheng Lian,et al.  Reliability-Based Design Optimization of a Transonic Compressor , 2006 .

[63]  Eduardo Saliby Descriptive sampling: an improvement over Latin hypercube sampling , 1997, WSC '97.

[64]  Andy J. Keane,et al.  Cokriging for Robust Design Optimization , 2012 .

[65]  Zhang Yan,et al.  Polynomial chaos expansion based robust design optimization , 2011, 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering.

[66]  Xiaoping Du,et al.  Analytical robustness assessment for robust design , 2007 .

[67]  Xiaoping Du,et al.  A robust design method using variable transformation and Gauss–Hermite integration , 2006 .

[68]  K. Giannakoglou,et al.  Aerodynamic Shape Optimization Using First and Second Order Adjoint and Direct Approaches , 2008 .

[69]  Sumeet Parashar,et al.  Self Organizing Maps (SOM) for Design Selection in Robust Multi-Objective Design of Aerofoil , 2008 .

[70]  Arthur M. Geoffrion,et al.  An Interactive Approach for Multi-Criterion Optimization, with an Application to the Operation of an Academic Department , 1972 .

[71]  Barry L. Nelson,et al.  Stochastic kriging for simulation metamodeling , 2008, 2008 Winter Simulation Conference.

[72]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[73]  Ali Kamran,et al.  ±3-Sigma based design optimization of 3D Finocyl grain , 2013 .

[74]  Sang-Hoon Lee,et al.  A comparative study of uncertainty propagation methods for black-box-type problems , 2008 .

[75]  Gustavo H. C. Silva,et al.  Robust and Reliability-Based Aeroelastic Design of Composite Plate Wings , 2017 .

[76]  Lawrence L. Green,et al.  Probabilistic Methods for Uncertainty Propagation Applied to Aircraft Design , 2002 .

[77]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[78]  A. Messac,et al.  Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming , 2002 .

[79]  Xiaoping Du,et al.  Robust Mechanism synthesis with random and interval variables , 2009 .

[80]  Zhenzhou Lu,et al.  Regional sensitivity analysis of aleatory and epistemic uncertainties on failure probability , 2014 .

[81]  Nestor V. Queipo,et al.  Efficient Shape Optimization Under Uncertainty Using Polynomial Chaos Expansions and Local Sensitivities , 2006 .

[82]  J. Hammersley MONTE CARLO METHODS FOR SOLVING MULTIVARIABLE PROBLEMS , 1960 .

[83]  R. Stocki,et al.  A method to improve design reliability using optimal Latin hypercube sampling , 2005 .

[84]  Costas Papadimitriou,et al.  Robust reliability-based aerodynamic shape optimization , 2014 .

[85]  Daisuke Sasaki,et al.  Visualization and Data Mining of Pareto Solutions Using Self-Organizing Map , 2003, EMO.

[86]  John E. Renaud,et al.  Uncertainty quantification using evidence theory in multidisciplinary design optimization , 2004, Reliab. Eng. Syst. Saf..

[87]  Éloi Bossé,et al.  Robust combination rules for evidence theory , 2009, Inf. Fusion.

[88]  G. Geoffrey Vining,et al.  Taguchi's parameter design: a panel discussion , 1992 .

[89]  Sharon L. Padula,et al.  Aerospace applications of optimization under uncertainty , 2006 .

[90]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[91]  Rania Hassan,et al.  Approach to Discrete Optimization Under Uncertainty: The Population-Based Sampling Genetic Algorithm , 2007 .

[92]  N. L. Johnson,et al.  Continuous Multivariate Distributions, Volume 1: Models and Applications , 2019 .

[93]  J. P. Jarrett,et al.  Robust Airfoil Optimization and the Importance of Appropriately Representing Uncertainty , 2017 .

[94]  Serhat Hosder,et al.  Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions , 2014, Reliab. Eng. Syst. Saf..

[95]  Stéphane Segonds,et al.  Aircraft Multidisciplinary Design Optimization Under Both Model and Design Variables Uncertainty , 2013 .

[96]  Yuan Gao,et al.  Design Optimization of Natural-Laminar-Flow Airfoil for Complicated Flight Conditions , 2017 .

[97]  Jon C. Helton,et al.  Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty , 2006, Reliab. Eng. Syst. Saf..

[98]  Rynson W. H. Lau An Adaptive Supersampling Method , 1995, ICSC.

[99]  Laura Painton Swiler,et al.  Aleatory and Epistemic Uncertainty Quantification for Engineering Applications , 2007 .

[100]  Xiaoping Du,et al.  Sensitivity Analysis with Mixture of Epistemic and Aleatory Uncertainties , 2007 .

[101]  D. Goldberg,et al.  Don't evaluate, inherit , 2001 .

[102]  R. Rackwitz,et al.  Structural reliability under combined random load sequences , 1978 .

[103]  Xiaoping Du,et al.  Reliability sensitivity analysis with random and interval variables , 2009 .

[104]  Danny Lathouwers,et al.  Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis , 2014, J. Comput. Phys..

[105]  Eduardo Saliby,et al.  Descriptive Sampling: A Better Approach to Monte Carlo Simulation , 1990 .

[106]  Tapabrata Ray,et al.  Six-Sigma Robust Design Optimization Using a Many-Objective Decomposition-Based Evolutionary Algorithm , 2015, IEEE Transactions on Evolutionary Computation.

[107]  C. Jiang,et al.  A Hybrid Reliability Approach Based on Probability and Interval for Uncertain Structures , 2012 .

[108]  Sean P. Kenny,et al.  Needs and Opportunities for Uncertainty- Based Multidisciplinary Design Methods for Aerospace Vehicles , 2002 .

[109]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[110]  Zhen Luo,et al.  An incremental shifting vector approach for reliability-based design optimization , 2016 .

[111]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[112]  Wei Sun,et al.  The optimization for the backward-facing step flow control with synthetic jet based on experiment , 2015 .

[113]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[114]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[115]  Sang-Hoon Lee,et al.  Robust design with arbitrary distributions using Gauss-type quadrature formula , 2009 .

[116]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[117]  Peter Reichert,et al.  An Efficient Sampling Technique for Bayesian Inference With Computationally Demanding Models , 2002, Technometrics.

[118]  Paul G. Constantine,et al.  Active Subspaces - Emerging Ideas for Dimension Reduction in Parameter Studies , 2015, SIAM spotlights.

[119]  Byung Chai Lee,et al.  Development of a simple and efficient method for robust optimization , 2002 .

[120]  Michael Oberguggenberger,et al.  Classical and imprecise probability methods for sensitivity analysis in engineering: A case study , 2009, Int. J. Approx. Reason..

[121]  G. Chiandussi,et al.  Comparison of multi-objective optimization methodologies for engineering applications , 2012, Comput. Math. Appl..

[122]  Geoffrey T. Parks,et al.  Robust Aerodynamic Design Optimization Using Polynomial Chaos , 2009 .

[123]  A. Messac,et al.  Mathematical and Pragmatic Perspectives of Physical Programming , 2001 .

[124]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[125]  Xiaobo Zhou,et al.  Local Sensitivity Analysis , 2008, Encyclopedia of GIS.

[126]  David W. Zingg,et al.  Numerical aerodynamic optimization incorporating laminar-turbulent transition prediction , 2007 .

[127]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[128]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[129]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[130]  Volker Schulz,et al.  Problem Formulations and Treatment of Uncertainties in Aerodynamic Design , 2009 .

[131]  C. Allen,et al.  A Geometric Comparison of Aerofoil Shape Parameterisation Methods , 2016 .

[132]  Alireza Doostan,et al.  Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.

[133]  Gary Tang,et al.  Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation , 2011, Reliab. Eng. Syst. Saf..

[134]  William S. Cleveland The elements of graphing data , 1980 .

[135]  Geoffrey T. Parks,et al.  Decomposition-based Evolutionary Aerodynamic Robust Optimization with Multi-fidelity Point Collocation Non-intrusive Polynomial Chaos , 2015 .

[136]  Kemper Lewis,et al.  A comprehensive robust design approach for decision trade-offs in complex systems design , 2001 .

[137]  Christopher A. Mattson,et al.  Handling Equality Constraints in Robust Design Optimization , 2003 .

[138]  Arthur P. Dempster,et al.  A Generalization of Bayesian Inference , 1968, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[139]  T. Turányi Sensitivity analysis of complex kinetic systems. Tools and applications , 1990 .

[140]  Hong-Shuang Li,et al.  Hybrid Dimension-Reduction Method for Robust Design Optimization , 2013 .

[141]  John R. D'Errico,et al.  Statistical tolerancing using a modification of Taguchi's method , 1988 .

[142]  D. P. Young,et al.  Study Based on the AIAA Aerodynamic Design Optimization Discussion Group Test Cases , 2015 .

[143]  S. Azarm,et al.  Multi-objective robust optimization using a sensitivity region concept , 2005 .

[144]  Michael C. Fu,et al.  On sample average approximation algorithms for determining the optimal importance sampling parameters in pricing financial derivatives on Lévy processes , 2016, Oper. Res. Lett..

[145]  Rémi Abgrall,et al.  On the use of the Sparse Grid techniques coupled with Polynomial Chaos , 2011 .

[146]  J. Kacprzyk,et al.  Advances in the Dempster-Shafer theory of evidence , 1994 .

[147]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.

[148]  C. Allen,et al.  Unified fluid–structure interpolation and mesh motion using radial basis functions , 2008 .

[149]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[150]  Nathan A. Baker,et al.  Enhancing sparsity of Hermite polynomial expansions by iterative rotations , 2015, J. Comput. Phys..

[151]  Tanmoy Chatterjee,et al.  A Critical Review of Surrogate Assisted Robust Design Optimization , 2019 .

[152]  Kari Sentz,et al.  Combination of Evidence in Dempster-Shafer Theory , 2002 .

[153]  Emanuele Borgonovo,et al.  On the Quantification and Decomposition of Uncertainty , 2007 .

[154]  Carlos A. Coello Coello,et al.  Evolutionary Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization , 2011, Computational Optimization, Methods and Algorithms.

[155]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[156]  Shlomo Tsach,et al.  A new efficient technology of aerodynamic design based on CFD driven optimization , 2006 .

[157]  E. Iuliano Global optimization of benchmark aerodynamic cases using physics-based surrogate models , 2017 .

[158]  Sankaran Mahadevan,et al.  Model validation under epistemic uncertainty , 2011, Reliab. Eng. Syst. Saf..

[159]  B. Kulfan Universal Parametric Geometry Representation Method , 2008 .

[160]  Madan M. Gupta Fuzzy set theory and its applications , 1992 .

[161]  Alireza Doostan,et al.  On polynomial chaos expansion via gradient-enhanced ℓ1-minimization , 2015, J. Comput. Phys..

[162]  Andy J. Keane,et al.  Comparison of Several Optimization Strategies for Robust Turbine Blade Design , 2009 .

[163]  Wenbin Song,et al.  Multiobjective Memetic Algorithm and Its Application in Robust Airfoil Shape Optimization , 2009 .

[164]  Luis F. Gonzalez,et al.  Robust design optimisation using multi-objectiveevolutionary algorithms , 2008 .

[165]  P. A. Newman,et al.  Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives , 2001 .

[166]  Yan Ou,et al.  Monte Carlo simulation-based customer service reliability assessment , 1999 .

[167]  Wei Chen,et al.  Concurrent treatment of parametric uncertainty and metamodeling uncertainty in robust design , 2013 .

[168]  Wei Chen,et al.  An integrated framework for optimization under uncertainty using inverse Reliability strategy , 2004 .

[169]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[170]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[171]  Marin D. Guenov,et al.  Comparative Analysis of Uncertainty Propagation Methods for Robust Engineering Design , 2007 .

[172]  C. Jiang,et al.  Reliability-based design optimization for problems with interval distribution parameters , 2016, Structural and Multidisciplinary Optimization.

[173]  Kyriakos C. Giannakoglou,et al.  Third‐order sensitivity analysis for robust aerodynamic design using continuous adjoint , 2013 .

[174]  A. Neumaier Interval methods for systems of equations , 1990 .

[175]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[176]  Vahid Vahidinasab,et al.  Normal boundary intersection method for suppliers’ strategic bidding in electricity markets: An environmental/economic approach , 2010 .

[177]  Yalin Pan,et al.  Aerodynamic robust optimization of flying wing aircraft based on interval method , 2017 .

[178]  Afzal Suleman,et al.  A Robust and Reliability Based Design Optimization Framework for Wing Design , 2014 .

[179]  Sharon L. Padula,et al.  Probabilistic approach to free-form airfoil shape optimization under uncertainty , 2002 .

[180]  Gregery T. Buzzard,et al.  Global sensitivity analysis using sparse grid interpolation and polynomial chaos , 2012, Reliab. Eng. Syst. Saf..

[181]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[182]  Gene Hou,et al.  EFFECT OF RANDOM GEOMETRIC UNCERTAINTY ON THE COMPUTATIONAL DESIGN OF A 3-D FLEXIBLE WING , 2002 .

[183]  Jim W. Hall,et al.  Adaptive importance sampling for risk analysis of complex infrastructure systems , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[184]  Shigeru Obayashi,et al.  Data Mining for Multidisciplinary Design Space of Regional-Jet Wing , 2007, J. Aerosp. Comput. Inf. Commun..

[185]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[186]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[187]  S. Azarm,et al.  Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts , 2011 .

[188]  M. Eldred,et al.  Comparison of Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Quantification , 2009 .

[189]  Shun Kang,et al.  Uncertainty‐based robust aerodynamic optimization of rotor blades , 2013 .

[190]  Tae Hee Lee,et al.  Robust Design: An Overview , 2006 .

[191]  Jacques Periaux,et al.  Uncertainty based robust optimization method for drag minimization problems in aerodynamics , 2012 .

[192]  A. Sudjianto,et al.  Reliability-Based Design With the Mixture of Random and Interval Variables , 2005, DAC 2003.

[193]  Laura Lurati,et al.  Robust Airfoil Design Under Uncertain Operation Conditions Using Stochastic Collocation , 2008 .

[194]  Stefan Görtz,et al.  Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function , 2013 .

[195]  Jian Su,et al.  Automatic Differentiation in Robust Optimization , 1997 .

[196]  Wei Chen,et al.  Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design , 2000 .

[197]  Huyse Luc,et al.  Free-form airfoil shape optimization under uncertainty using maximum expected value and second-order second-moment strategies , 2001 .

[198]  Yew-Soon Ong,et al.  Curse and Blessing of Uncertainty in Evolutionary Algorithm Using Approximation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[199]  Kai-Yew Lum,et al.  Max-min surrogate-assisted evolutionary algorithm for robust design , 2006, IEEE Transactions on Evolutionary Computation.

[200]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[201]  Slawomir Koziel,et al.  Robust Airfoil Optimization under Inherent and Model-form Uncertainties Using Stochastic Expansions , 2012 .

[202]  Michel van Tooren,et al.  Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles , 2011 .

[203]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[204]  Jon C. Helton,et al.  Investigation of Evidence Theory for Engineering Applications , 2002 .

[205]  R. L. Riche,et al.  An Overview of Gradient-Enhanced Metamodels with Applications , 2017, Archives of Computational Methods in Engineering.

[206]  Zhenzhou Lu,et al.  A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty , 2016, Reliab. Eng. Syst. Saf..

[207]  Carlos A. Coello Coello,et al.  Evolutionary multi-objective optimization: a historical view of the field , 2006, IEEE Comput. Intell. Mag..

[208]  R. Dwight,et al.  Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches , 2010 .

[209]  Hans Janssen,et al.  Efficiency enhancement of optimized Latin hypercube sampling strategies: Application to Monte Carlo uncertainty analysis and meta-modeling , 2015 .

[210]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[211]  Donald R. Houser,et al.  A ROBUST OPTIMIZATION PROCEDURE WITH VARIATIONS ON DESIGN VARIABLES AND CONSTRAINTS , 1995 .

[212]  Marin D. Guenov,et al.  Airfoil Design under Uncertainty with Robust Geometric Parameterization , 2009 .

[213]  Carl D. Sorensen,et al.  A general approach for robust optimal design , 1993 .

[214]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[215]  Hans Janssen,et al.  Monte-Carlo based uncertainty analysis: Sampling efficiency and sampling convergence , 2013, Reliab. Eng. Syst. Saf..

[216]  Christian P. Robert,et al.  Monte Carlo Methods , 2016 .

[217]  Gerhart I. Schuëller,et al.  Computational methods in optimization considering uncertainties – An overview , 2008 .

[218]  M. D. Stefano,et al.  Efficient algorithm for second-order reliability analysis , 1991 .

[219]  Hector Budman,et al.  A Polynomial-Chaos based Algorithm for Robust optimization in the presence of Bayesian Uncertainty , 2012 .

[220]  Akira Oyama,et al.  Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition , 2010 .

[221]  Zhao Huan,et al.  Effective robust design of high lift NLF airfoil under multi-parameter uncertainty , 2017 .

[222]  S. Rahman,et al.  A generalized dimension‐reduction method for multidimensional integration in stochastic mechanics , 2004 .

[223]  Sankaran Mahadevan,et al.  Inclusion of Model Errors in Reliability-Based Optimization , 2006 .

[224]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[225]  Edmondo Minisci,et al.  Robust aerodynamic design of variable speed wind turbine rotors , 2012 .

[227]  N. Wiener The Homogeneous Chaos , 1938 .

[228]  Ke Zhao,et al.  Robust design of natural laminar flow supercritical airfoil by multi-objective evolution method , 2014 .

[229]  Sang Wook Lee,et al.  Robust Airfoil Shape Optimization Using Design For Six Sigma , 2006 .

[230]  António Gaspar-Cunha,et al.  Robustness in multi-objective optimization using evolutionary algorithms , 2008, Comput. Optim. Appl..

[231]  Shigeru Obayashi,et al.  Data Mining for Aerodynamic Design Space , 2005, J. Aerosp. Comput. Inf. Commun..

[232]  W. T. Martin,et al.  The Orthogonal Development of Non-Linear Functionals in Series of Fourier-Hermite Functionals , 1947 .

[233]  Melike Nikbay,et al.  Reliability Based Multidisciplinary Optimization of Aeroelastic Systems with Structural and Aerodynamic Uncertainties , 2010 .

[234]  Slawomir Koziel,et al.  Multi-Fidelity Robust Aerodynamic Design Optimization under Mixed Uncertainty , 2015 .

[235]  Wei Chen,et al.  Exploration of the effectiveness of physical programming in robust design , 2000 .

[236]  Kalyanmoy Deb,et al.  On finding multiple Pareto-optimal solutions using classical and evolutionary generating methods , 2007, Eur. J. Oper. Res..

[237]  Justin Winokur,et al.  Adaptive Sparse Grid Approaches to Polynomial Chaos Expansions for Uncertainty Quantification , 2015 .

[238]  Xiaoping Du,et al.  Reliability Analysis for Multidisciplinary Systems with Random and Interval Variables , 2010 .

[239]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[240]  Megdouda Tari,et al.  Refined descriptive sampling: A better approach to Monte Carlo simulation , 2006, Simul. Model. Pract. Theory.

[241]  D. Xiu,et al.  Modeling uncertainty in flow simulations via generalized polynomial chaos , 2003 .

[242]  Bernard De Baets,et al.  Is Fitness Inheritance Useful for Real-World Applications? , 2003, EMO.

[243]  Wu Li,et al.  Performance Trades Study for Robust Airfoil Shape Optimization , 2003 .

[244]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[245]  Meng-Sing Liou,et al.  Progress in design optimization using evolutionary algorithms for aerodynamic problems , 2010 .

[246]  Joongki Ahn,et al.  Reliability-based wing design optimization using trust region-sequential quadratic programming framework , 2005 .

[247]  R. Caflisch,et al.  Smoothness and dimension reduction in Quasi-Monte Carlo methods , 1996 .

[248]  Wu Li,et al.  Profile Optimization Method for Robust Airfoil Shape Optimization in Viscous Flow , 2003 .

[249]  H. Sobieczky Parametric Airfoils and Wings , 1999 .

[250]  Z. Gao,et al.  Robust Design of High Speed Natural-Laminar-Flow Airfoil for High Lift , 2017 .

[251]  Richard L. Campbell,et al.  Progress Toward Efficient Laminar Flow Analysis and Design , 2011 .

[252]  S. Rahman,et al.  A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics , 2004 .

[253]  Shigeru Obayashi,et al.  Practical Implementation of Robust Design Assisted by Response Surface Approximation and Visual Data-Mining , 2009 .

[254]  Wu Li,et al.  Aerospace applications of optimization under uncertainity , 2003, Fourth International Symposium on Uncertainty Modeling and Analysis, 2003. ISUMA 2003..

[255]  Carlos A. Coello Coello,et al.  Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer , 2004, GECCO.

[256]  Ramana V. Grandhi,et al.  Sensitivity analysis of structural response uncertainty propagation using evidence theory , 2002 .

[257]  Achille Messac,et al.  Physical programming - Effective optimization for computational design , 1996 .

[258]  Genichi Taguchi,et al.  Performance analysis design , 1978 .