Bladder Volume Decoding from Afferent Neural Activity

RESUME Lorsque les fonctions de stockage et de miction de la vessie echouent a la suite de traumatismes medullaires, ou en raison d'autres maladies neurologiques, de conditions de sante ou au vieillissement, des complications graves pour la sante du patient se produisent. Actuellement, il est possible de restaurer partiellement les fonctions de la vessie chez les patients refractaires aux medicaments a l'aide des neurostimulateurs implantables. Pour ameliorer l'efficacite et la securite de ces neuroprotheses, il faut un capteur de la vessie capable de detecter l’urine stockee afin de mettre en place un systeme en boucle fermee qui applique la stimulation electrique uniquement lorsque necessaire. Le capteur peut egalement servir a aviser les patients ayant des sensations affaiblies pour les aviser en temps opportun le moment ou la vessie doit etre videe ou quand un volume residuel postmictionnel anormalement eleve reste apres une miction incomplete. Dans cette these, on presente de nouvelles methodes de mesure, ainsi qu’un processeur de signal numerique dedie pour decoder en temps reel le volume de la vessie a partir des enregistrements neuronaux afferents provenant des recepteurs naturels presents dans la paroi de la vessie. Nos principales contributions sont rapportees dans trois articles de journaux avec comite de lecture. On presente d'abord une revue exhaustive de la litterature comprenant des articles de journaux, des brevets et les livres les plus reputes portant sur l'anatomie, la physiologie et la physiopathologie du tractus urinaire inferieur ainsi que sur la mesure du volume ou la pression de la vessie. Cette etude nous a permis d'identifier les besoins qu'un capteur de la vessie doit satisfaire pour etre utilise dans des applications chroniques telles que celles proposees dans cette these. On presente aussi le resultat d’une analyse exhaustive des caracteristiques anatomiques et physiologiques de la vessie que nous avons identifiees d’avoir exerce une influence, ou meme d’avoir empeche, la realisation d'un tel capteur dans des etudes faites au cours des dernieres annees. Sur la base de cette etude et de l'evaluation systematique des methodes de mesure pour la vessie, on a conclu que le principe de mesure le mieux adapte pour la surveillance chronique du volume de la vessie etait la detection, la discrimination et le decodage de l'activite neuronale afferente decoulant des recepteurs specialises du volume (mecanorecepteurs), au sujet desquels certains auteurs ont emis l'hypothese de leur existence dans la muqueuse interne de la vessie. Ensuite, on presente la methode de mesure qui permet d'estimer en temps reel le volume de la vessie a partir de l'activite afferente des mecanorecepteurs. Notre methode a ete validee avec les----------ABSTRACT Failure of the storage and voiding functions of the urinary bladder due to spinal cord injury (SCI), neural diseases, health conditions, or aging, causes serious complications in a patient's health. Currently, it is possible to partially restore bladder functions in drug-refractory patients using implantable neurostimulators. Improving the efficacy and safety of these neuroprostheses used for bladder functions restoration requires a bladder sensor (BS) capable of detecting urine volume in real-time to implement a closed-loop system that applies electrical stimulation only when required. The BS can also trigger an early warning to advise patients with impaired sensations when the bladder should be voided or when an abnormally high post-voiding residual volume remains after an incomplete voiding. In this thesis, we present new measurement methods and a dedicated digital signal processor for real-time decoding of the bladder volume through afferent neural signals arising from natural receptors present in the bladder wall. The main contributions of this thesis have been reported in three peer-reviewed journal papers. We first present a comprehensive literature review, including papers, patents and mainstay books of bladder anatomy, physiology, and pathophysiology. This review allowed us to identify the requirements (user needs) that a BS must meet for chronic applications, such as those proposed in this thesis. An exhaustive analysis of the particular anatomical and physiological characteristics of the bladder, which we realized had influenced or prevented the achievement of a BS for monitoring the bladder volume or pressure in past studies, are also presented. Based on this study and on a systematic assessment of the measurement methods published in past years, we determined the best measurement principle for chronic bladder volume monitoring: the detection, discrimination and decoding of the afferent neural activity stemming from specialized volume receptors (mechanoreceptors), on which some authors had hypothesized about its existence in the bladder inner mucosa. Next, we present methods that allows for a real-time estimation of bladder volume through the afferent activity of the bladder mechanoreceptors. Our method was validated with data acquired from anesthetized rats in acute experiments. It was possible to qualitatively estimate three states of bladder fullness in 100% of trials when the recorded afferent activity exhibited a Spearman’s correlation coefficient of 0.6 or better. Furthermore, we could quantitatively estimate the bladder volume, and also its pressure, using time-windows of properly chosen duration. The mean

[1]  J. Wyndaele,et al.  Mechanosensitive primary bladder afferent activity in rats with and without spinal cord transection. , 2009, The Journal of urology.

[2]  Robert A. Gaunt,et al.  Estimating bladder pressure from sacral dorsal root ganglia recordings , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[3]  André Luiz Aita,et al.  Design of an integrated low power high CMRR instrumentation amplifier for biomedical applications , 2008 .

[4]  T. Seese,et al.  Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating. , 1998, Laboratory investigation; a journal of technical methods and pathology.

[5]  G W Timm,et al.  Bladder motility detection using the Hall effect. , 1973, IEEE transactions on bio-medical engineering.

[6]  B. Kaeckenbeeck,et al.  [Urinary incontinence in women]. , 2019, Acta urologica Belgica.

[7]  Hamid Jafarkhani,et al.  in Electrical and Computer Engineering , 2005 .

[8]  Herman B. K. Boom,et al.  Bridging Disciplines For Biomedicine , 1997 .

[9]  Silvestro Micera,et al.  Bidirectional interfaces with the peripheral nervous system. , 2009, International review of neurobiology.

[10]  Mohamad Sawan,et al.  A DSP for Sensing the Bladder Volume Through Afferent Neural Pathways , 2014, IEEE Transactions on Biomedical Circuits and Systems.

[11]  L. E. Baker,et al.  Measurement of urinary bladder emptying using electrical impedance , 2006, Medical and biological engineering.

[12]  Arnaldo Mendez,et al.  Estimation of Bladder Volume From Afferent Neural Activity , 2013, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[13]  Silvestro Micera,et al.  A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems , 2005, Journal of the peripheral nervous system : JPNS.

[14]  M. Prins,et al.  Evaluation of a non-invasive bladder volume measurement in children , 2008, Scandinavian journal of urology and nephrology.

[15]  H. Oh-oka,et al.  Neuromodulation in the Treatment of Overactive Bladder With a Focus on Interferential Therapy , 2010 .

[16]  T Sinkjaer,et al.  Intraoperative recording of electroneurographic signals from cuff electrodes on extradural sacral roots in spinal cord injured patients. , 2005, The Journal of urology.

[17]  M. Elhilali,et al.  Implantable selective stimulator to improve bladder voiding: design and chronic experiments in dogs. , 2000, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[18]  J. Webster Encyclopedia of Medical Devices and Instrumentation , 1988 .

[19]  Masashi Kato,et al.  Impact of urinary incontinence on the psychological burden of family caregivers , 2009, Neurourology and urodynamics.

[20]  Arnaldo Mendez,et al.  Chronic monitoring of bladder volume: a critical review and assessment of measurement methods. , 2011, The Canadian journal of urology.

[21]  Warren M Grill,et al.  Implanted neural interfaces: biochallenges and engineered solutions. , 2009, Annual review of biomedical engineering.

[22]  C. O'connell,et al.  A Survey of Canadian Websites Providing Information about Female Urinary Incontinence , 2022 .

[23]  M S Lewicki,et al.  A review of methods for spike sorting: the detection and classification of neural action potentials. , 1998, Network.

[24]  J. Morrison The activation of bladder wall afferent nerves , 1999, Experimental physiology.

[25]  N. Simforoosh,et al.  Accuracy of residual urine measurement in men: comparison between real-time ultrasonography and catheterization. , 1997, The Journal of urology.

[26]  J. Blaivas,et al.  Detrusor-external sphincter dyssynergia. , 1981, The Journal of urology.

[27]  Allen C. Cheng,et al.  Programmable Neural Processing on a Smartdust for Brain-Computer Interfaces , 2010, IEEE Transactions on Biomedical Circuits and Systems.

[28]  Luca Citi,et al.  Decoding Information From Neural Signals Recorded Using Intraneural Electrodes: Toward the Development of a Neurocontrolled Hand Prosthesis , 2010, Proceedings of the IEEE.

[29]  J. Middleton,et al.  Artificial autonomic reflexes: using functional electrical stimulation to mimic bladder reflexes after injury or disease , 2004, Autonomic Neuroscience.

[30]  M. Sawan,et al.  Proposed new bladder volume monitoring device based on impedance measurement , 2006, Medical and Biological Engineering and Computing.

[31]  Willis J. Tompkins,et al.  Bladder fullness detection using multiple electrodes , 1988, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[32]  J Kumazawa,et al.  Continuous monitoring of bladder pressure in dogs in a completely physiological state. , 1987, British journal of urology.

[33]  D. W. Hill,et al.  The measurement of residual urine volume by electrical impedance in man , 2006, Medical and biological engineering.

[34]  T. Dassen,et al.  Prevalence of urinary incontinence and associated risk factors in nursing home residents: A systematic review , 2009, Neurourology and urodynamics.

[35]  Eric S. Rovner,et al.  Pathophysiology and Classification of Voiding Dysfunction , 2000 .

[36]  C. Kim,et al.  Bladder volume measurement with electrical impedance analysis in spinal cord-injured patients. , 1998, American journal of physical medicine & rehabilitation.

[37]  Electroneurographic (ENG) signals from intradural S3 dorsal sacral nerve roots in a patient with a suprasacral spinal cord injury , 2000 .

[38]  Ran Ginosar,et al.  An Integrated System for Multichannel Neuronal Recording With Spike/LFP Separation, Integrated A/D Conversion and Threshold Detection , 2007, IEEE Trans. Biomed. Eng..

[39]  P. Wolf Thermal Considerations for the Design of an Implanted Cortical Brain–Machine Interface (BMI) , 2008 .

[40]  G. Gebhart,et al.  Mechanosensitive properties of pelvic nerve afferent fibers innervating the urinary bladder of the rat. , 1994, Journal of neurophysiology.

[41]  J. Gajewski,et al.  2012 update: guidelines for adult urinary incontinence collaborative consensus document for the canadian urological association. , 2012, Canadian Urological Association journal = Journal de l'Association des urologues du Canada.

[42]  P. Peckham,et al.  Functional electrical stimulation for neuromuscular applications. , 2005, Annual review of biomedical engineering.

[43]  T Sinkjaer,et al.  Analysis of bladder related nerve cuff electrode recordings from preganglionic pelvic nerve and sacral roots in pigs. , 2000, The Journal of urology.

[44]  Warren M Grill,et al.  Dorsal genital nerve stimulation for the treatment of overactive bladder symptoms , 2008, Neurourology and urodynamics.

[45]  Ángel Rodríguez-Vázquez,et al.  A Low-Power Programmable Neural Spike Detection Channel With Embedded Calibration and Data Compression , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[46]  Laurel H. Carney,et al.  Semi-supervised spike sorting using pattern matching and a scaled Mahalanobis distance metric , 2012, Journal of Neuroscience Methods.

[47]  M. Damaser,et al.  Feasibility of fluid volume conductance to assess bladder volume , 2008, Neurourology and urodynamics.

[48]  S. Siegel,et al.  Pudendal Nerve Neuromodulation: A New Option for Refractory Bladder Overactivity and Pain , 2010 .

[49]  Liang-Gee Chen,et al.  128-channel spike sorting processor with a parallel-folding structure in 90nm process , 2009, 2009 IEEE International Symposium on Circuits and Systems.

[50]  J Kutzenberger,et al.  Surgical therapy of neurogenic detrusor overactivity (hyperreflexia) in paraplegic patients by sacral deafferentation and implant driven micturition by sacral anterior root stimulation: methods, indications, results, complications, and future prospects. , 2007, Acta neurochirurgica. Supplement.

[51]  K.V. Shenoy,et al.  Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[52]  D.M. Durand,et al.  Peripheral Nerve Signals for Neural Control , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[53]  Arthur Prochazka,et al.  Control of urinary bladder function with devices: successes and failures. , 2006, Progress in brain research.

[54]  Brian S Buckley,et al.  Prevalence of urinary incontinence in men, women, and children--current evidence: findings of the Fourth International Consultation on Incontinence. , 2010, Urology.

[55]  M Sawan,et al.  Implantable volume monitor and miniaturized stimulator dedicated to bladder control. , 1997, Artificial organs.

[56]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[57]  J. Morrison Sensations Arising from the Lower Urinary Tract , 1987 .

[58]  Eduardo Fernández,et al.  Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve , 2004, IEEE Transactions on Biomedical Engineering.

[59]  Scott K. Arfin,et al.  Low-Power Circuits for Brain-Machine Interfaces , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[60]  P. Sengupta,et al.  Does implantation of sonomicrometry crystals alter regional cardiac muscle function? , 2007, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[61]  Mohamad Sawan,et al.  A low-power integrated neural interface with digital spike detection and extraction , 2010 .

[62]  J. Morrison,et al.  The physiological mechanisms involved in bladder emptying. , 1997, Scandinavian journal of urology and nephrology. Supplementum.

[63]  M. M. Roberts Neurophysiology in neurourology , 2008, Muscle & nerve.

[64]  Ian Witten,et al.  Data Mining , 2000 .

[65]  Mohamad Sawan,et al.  Integrated programmable neurostimulator to recuperate the bladder functions , 2003, CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436).

[66]  Taejeong Kim,et al.  A new action potential detector using the MTEO and its effects on spike sorting systems at low signal-to-noise ratios , 2006, IEEE Transactions on Biomedical Engineering.

[67]  Reid R. Harrison,et al.  Recording sensory and motor information from peripheral nerves with Utah Slanted Electrode Arrays , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[68]  Kim D Nielsen,et al.  Biopotentials as command and feedback signals in functional electrical stimulation systems. , 2003, Medical engineering & physics.

[69]  N. Rijkhoff,et al.  Minimal invasive electrode implantation for conditional stimulation of the dorsal genital nerve in neurogenic detrusor overactivity , 2011, Spinal Cord.

[70]  Neeraj Kohli,et al.  InterStim Therapy: A Contemporary Approach to Overactive Bladder. , 2009, Reviews in obstetrics & gynecology.

[71]  Mohamad Sawan,et al.  Biomedical Circuits and Systems Dedicated for Sensing and Neurostimulation: Case study on Urinary Bladder dysfunctions , 2008 .

[72]  Carolyn C Johnstone,et al.  The urinary system. , 2014, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[73]  Luigi Raffo,et al.  Peripheral Neural Activity Recording and Stimulation System , 2011, IEEE Transactions on Biomedical Circuits and Systems.

[74]  T. Sinkjaer,et al.  Detecting sudden bladder pressure increases from the pelvic nerve afferent activity , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[75]  J. Mason Andrew,et al.  On-chip feature extraction for spike sorting in high density implantable neural recording systems , 2010, 2010 Biomedical Circuits and Systems Conference (BioCAS).

[76]  Warren M Grill,et al.  Conditional and continuous electrical stimulation increase cystometric capacity in persons with spinal cord injury , 2009, Neurourology and urodynamics.

[77]  S. Micera,et al.  Neurobiological evaluation of thin-film longitudinal intrafascicular electrodes as a peripheral nerve interface , 2007, 2007 IEEE 10th International Conference on Rehabilitation Robotics.

[78]  D. Stewart,et al.  Major depression in female urinary incontinence. , 2006, Psychosomatics.

[79]  E. Perl,et al.  Sensory fibers of the pelvic nerve innervating the Rat's urinary bladder. , 2000, Journal of neurophysiology.

[80]  Seung-June Oh,et al.  Accuracy of bladder volume determinations by ultrasonography: are they accurate over entire bladder volume range? , 2003, Urology.

[81]  P. Hoebeke,et al.  Electrical stimulation for lower urinary tract dysfunction in children: A systematic review of the literature , 2011, Neurourology and urodynamics.

[82]  N. Bhadra,et al.  Variable Patterned Pudendal Nerve Stimuli Improves Reflex Bladder Activation , 2008, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[83]  M. Sawan,et al.  New reconfigurable ultrasonic enuresis monitoring system , 1998, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286).

[84]  A. Christopoulos,et al.  Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting , 2004 .

[85]  Patrick D. Wolf,et al.  Evaluation of spike-detection algorithms fora brain-machine interface application , 2004, IEEE Transactions on Biomedical Engineering.

[86]  Jennifer M Wu,et al.  Efficacy and adverse events of sacral nerve stimulation for overactive bladder: A systematic review , 2010, Neurourology and urodynamics.

[87]  W. Liu,et al.  A 128-Channel 6 mW Wireless Neural Recording IC With Spike Feature Extraction and UWB Transmitter , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[88]  Chutham Sawigun,et al.  A compact, nano-power CMOS action potential detector , 2009, 2009 IEEE Biomedical Circuits and Systems Conference.

[89]  F M Debruyne,et al.  Bladder pressure sensors in an animal model. , 1994, The Journal of urology.

[90]  Mohamad Sawan,et al.  Toward A Fully Integrated Neurostimulator With Inductive Power Recovery Front-End , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[91]  L. Bresler*,et al.  Effective methods of pelvic plexus nerve and bladder stimulation in anesthetized animal model. , 2008, Journal of rehabilitation research and development.

[92]  Luciano Fadiga,et al.  A low-power integrated circuit for analog spike detection and sorting in neural prosthesis systems , 2008, 2008 IEEE Biomedical Circuits and Systems Conference.

[93]  Robert Puers,et al.  An autonomous bladder pressure monitoring system , 2002 .

[94]  Mohamad Sawan,et al.  A Low-Power Integrated Bioamplifier With Active Low-Frequency Suppression , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[95]  Yong Lian,et al.  A 1-V 60-µW 16-channel interface chip for implantable neural recording , 2009, 2009 IEEE Custom Integrated Circuits Conference.

[96]  F M Debruyne,et al.  Urinary bladder control by electrical stimulation: Review of electrical stimulation techniques in spinal cord injury , 1997, Neurourology and urodynamics.

[97]  S Micera,et al.  Neuro-fuzzy decoding of sensory information from ensembles of simultaneously recorded dorsal root ganglion neurons for functional electrical stimulation applications , 2011, Journal of neural engineering.

[98]  M. Sawan,et al.  A Polypyrrole-based Strain Sensor Dedicated to Measure Bladder Volume in Patients with Urinary Dysfunction , 2008, Sensors.

[99]  P. Petrican,et al.  Design of a miniaturized ultrasonic bladder volume monitor and subsequent preliminary evaluation on 41 enuretic patients. , 1998, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[100]  J. Berthelot,et al.  Loss and recovery of independence among seniors. , 2002, Health reports.

[101]  H. Akaike A new look at the statistical model identification , 1974 .

[102]  R B Reilly,et al.  Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering , 2011, Journal of neural engineering.

[103]  L. Tu,et al.  Pudendal nerve neuromodulation with neurophysiology guidance: a potential treatment option for refractory chronic pelvi-perineal pain , 2010, International Urogynecology Journal.

[104]  J. F. Kaiser,et al.  On a simple algorithm to calculate the 'energy' of a signal , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[105]  Richard G. Lyons,et al.  Understanding Digital Signal Processing , 1996 .

[106]  N. K. Kristiansen,et al.  Design and evaluation of an ultrasound-based bladder volume monitor , 2004, Medical and Biological Engineering and Computing.

[107]  G W Timm,et al.  Bladder volume sensing by resistance measurement. , 1971, IEEE transactions on bio-medical engineering.

[108]  A. Sterling,et al.  Urodynamic equipment: technical aspects. Produced by the International Continence Society Working Party on Urodynamic Equipment. , 1987, Journal of medical engineering & technology.

[109]  Matias J. Ison,et al.  Realistic simulation of extracellular recordings , 2009, Journal of Neuroscience Methods.

[110]  Rahul Sarpeshkar,et al.  Efficient Universal Computing Architectures for Decoding Neural Activity , 2012, PloS one.

[111]  Jeremy Holleman,et al.  A micro-power neural spike detector and feature extractor in .13μm CMOS , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[112]  Qi Zhao,et al.  Neural signal classification using a simplified feature set with nonparametric clustering , 2009, Neurocomputing.

[113]  S. Mukhopadhyay,et al.  A new interpretation of nonlinear energy operator and its efficacy in spike detection , 1998, IEEE Transactions on Biomedical Engineering.

[114]  J. Downie,et al.  Effect of anesthetics on reflex micturition in the chronic cannula‐implanted rat , 2000, Neurourology and urodynamics.

[115]  Joseph D. Bronzino,et al.  The Biomedical Engineering Handbook , 1995 .

[116]  S. Coyle,et al.  Brain–computer interfaces: a review , 2003 .

[117]  J. Boggs,et al.  Detecting the onset of hyper-reflexive bladder contractions from the electrical activity of the pudendal nerve , 2005, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[118]  Rahul Sarpeshkar,et al.  An Energy-Efficient Micropower Neural Recording Amplifier , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[119]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[120]  J. Abbey,et al.  Electrical impedance measurement of urinary bladder fullness. , 1983, The Journal of microwave power.

[121]  Rizwan Bashirullah,et al.  Neural cache: A low-power online digital spike-sorting architecture , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[122]  P. Abrams,et al.  Good urodynamic practices: Uroflowmetry, filling cystometry, and pressure‐flow studies * * , 2002, Neurourology and urodynamics.

[123]  R. Olsson,et al.  A three-dimensional neural recording microsystem with implantable data compression circuitry , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[124]  Fan Zhang,et al.  Design of Ultra-Low Power Biopotential Amplifiers for Biosignal Acquisition Applications , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[125]  T Sinkjaer,et al.  Detection and inhibition of hyperreflexia‐like bladder contractions in the cat by sacral nerve root recording and electrical stimulation , 2001, Neurourology and urodynamics.

[126]  M. Chancellor,et al.  Neurophysiology of lower urinary tract function and dysfunction. , 2003, Reviews in urology.

[127]  Thomas Sinkjær,et al.  Integrating sensory nerve signals into neural prosthesis devices , 2000 .

[128]  M. Craggs Pelvic somato-visceral reflexes after spinal cord injury: measures of functional loss and partial preservation. , 2006, Progress in brain research.

[129]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[130]  R.R. Harrison,et al.  Wireless Neural Recording With Single Low-Power Integrated Circuit , 2009, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[131]  Dejan Markovic,et al.  Comparison of spike-sorting algorithms for future hardware implementation , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[132]  W. C. Groat,et al.  The neural control of micturition , 2008, Nature Reviews Neuroscience.

[133]  N. Rijkhoff,et al.  Limited value of bladder sensation as a trigger for conditional neurostimulation in spinal cord injury patients , 2010, Neurourology and urodynamics.

[134]  Jacques Corcos,et al.  Detection of the bladder volume from the neural afferent activities in dogs: experimental results , 2008, Neurological research.

[135]  B. Rogg,et al.  A simple fluid-mechanical model for the prediction of the stress-strain relation of the male urinary bladder. , 2007, Journal of biomechanics.

[136]  J. Wyndaele Investigating afferent nerve activity from the lower urinary tract: Highlighting some basic research techniques and clinical evaluation methods , 2010, Neurourology and urodynamics.

[137]  D. Markovic,et al.  A 130-μW, 64-channel spike-sorting DSP chip , 2009, 2009 IEEE Asian Solid-State Circuits Conference.

[138]  Michael D Craggs Objective measurement of bladder sensation: use of a new patient‐activated device and response to neuromodulation , 2005, BJU international.

[139]  Yoji Akao,et al.  Quality Function Deployment : Integrating Customer Requirements into Product Design , 1990 .

[140]  R. Quian Quiroga,et al.  Unsupervised Spike Detection and Sorting with Wavelets and Superparamagnetic Clustering , 2004, Neural Computation.

[141]  Linda Brubaker,et al.  Urinary incontinence in women , 2006, The Lancet.

[142]  Richard A. Normann,et al.  Selective Activation of the Muscles of Micturition Using Intrafascicular Stimulation of the Pudendal Nerve , 2011, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[143]  Naoki Yoshimura,et al.  Physiology and Pharmacology of the Bladder and Urethra , 2012 .