Parallel-in-time quantum simulation via Page and Wootters quantum time

In the past few decades, researchers have created a veritable zoo of quantum algorithm by drawing inspiration from classical computing, information theory, and even from physical phenomena. Here we present quantum algorithms for parallel-in-time simulations that are inspired by the Page and Wooters formalism. In this framework, and thus in our algorithms, the classical time-variable of quantum mechanics is promoted to the quantum realm by introducing a Hilbert space of"clock"qubits which are then entangled with the"system"qubits. We show that our algorithms can compute temporal properties over $N$ different times of many-body systems by only using $\log(N)$ clock qubits. As such, we achieve an exponential trade-off between time and spatial complexities. In addition, we rigorously prove that the entanglement created between the system qubits and the clock qubits has operational meaning, as it encodes valuable information about the system's dynamics. We also provide a circuit depth estimation of all the protocols, showing an exponential advantage in computation times over traditional sequential in time algorithms. In particular, for the case when the dynamics are determined by the Aubry-Andre model, we present a hybrid method for which our algorithms have a depth that only scales as $\mathcal{O}(\log(N)n)$. As a by product we can relate the previous schemes to the problem of equilibration of an isolated quantum system, thus indicating that our framework enable a new dimension for studying dynamical properties of many-body systems.

[1]  C. Chu,et al.  Time-like entanglement entropy in AdS/BCFT , 2023, Journal of High Energy Physics.

[2]  K. Narayan,et al.  Notes on time entanglement and pseudo-entropy , 2023, The European Physical Journal C.

[3]  J. Freericks,et al.  A linear response framework for simulating bosonic and fermionic correlation functions illustrated on quantum computers , 2023, 2302.10219.

[4]  vCaslav Brukner,et al.  Quantum Reference Frames for Lorentz Symmetry , 2022, 2212.14081.

[5]  Ngo Phuc Duc Loc Time-system entanglement and special relativity , 2022, Modern Physics Letters A.

[6]  Patrick J. Coles,et al.  Challenges and opportunities in quantum machine learning , 2022, Nature Computational Science.

[7]  R. Rossignoli,et al.  History states of one-dimensional quantum walks , 2022, Physical Review A.

[8]  S. Lloyd,et al.  Geometric Event-Based Quantum Mechanics , 2022, New Journal of Physics.

[9]  Shouvanik Chakrabarti,et al.  A Convergence Theory for Over-parameterized Variational Quantum Eigensolvers , 2022, ArXiv.

[10]  Patrick J. Coles,et al.  Group-Invariant Quantum Machine Learning , 2022, PRX Quantum.

[11]  Bar Y. Peled,et al.  Non-inertial quantum clock frames lead to non-Hermitian dynamics , 2022, Communications Physics.

[12]  G. Carleo,et al.  Variational dynamics as a ground-state problem on a quantum computer , 2022, Physical Review Research.

[13]  A. Smerzi,et al.  Peaceful coexistence of thermal equilibrium and the emergence of time , 2021, Physical Review D.

[14]  R. Rossignoli,et al.  Path Integrals from Spacetime Quantum Actions , 2021, 2111.05383.

[15]  Patrick J. Coles,et al.  Theory of overparametrization in quantum neural networks , 2021, Nature Computational Science.

[16]  A. Kemper,et al.  An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian Simulation , 2021, SIAM J. Matrix Anal. Appl..

[17]  Lindsay Bassman,et al.  Algebraic Compression of Quantum Circuits for Hamiltonian Evolution , 2021, Physical Review A.

[18]  Leandro R. S. Mendes,et al.  Non-linear equation of motion for Page-Wootters mechanism with interaction and quasi-ideal clocks , 2021, 2107.11452.

[19]  Bernhard Scholkopf,et al.  The Inductive Bias of Quantum Kernels , 2021, NeurIPS.

[20]  E. Cohen,et al.  Flow of time during energy measurements and the resulting time-energy uncertainty relations , 2021, Quantum.

[21]  Patrick J. Coles,et al.  Diagnosing Barren Plateaus with Tools from Quantum Optimal Control , 2021, Quantum.

[22]  vCaslav Brukner,et al.  Noncausal Page-Wootters circuits , 2021, Physical Review Research.

[23]  J. Freericks,et al.  Fixed Depth Hamiltonian Simulation via Cartan Decomposition. , 2021, Physical review letters.

[24]  Patrick J. Coles,et al.  Cost function dependent barren plateaus in shallow parametrized quantum circuits , 2021, Nature Communications.

[25]  A. Cuccoli,et al.  Time and classical equations of motion from quantum entanglement via the Page and Wootters mechanism with generalized coherent states , 2021, Nature Communications.

[26]  Minh C. Tran,et al.  Theory of Trotter Error with Commutator Scaling , 2021 .

[27]  Patrick J. Coles,et al.  Connecting ansatz expressibility to gradient magnitudes and barren plateaus , 2021, PRX Quantum.

[28]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[29]  R. Rossignoli,et al.  Spacetime quantum actions , 2020, Physical Review D.

[30]  A. Plastino,et al.  Emergent dynamics from entangled mixed states , 2020, 2009.12451.

[31]  Patrick J. Coles,et al.  Variational Hamiltonian Diagonalization for Dynamical Quantum Simulation , 2020, 2009.02559.

[32]  A. Smerzi,et al.  Time Observables in a Timeless Universe , 2020, Quantum.

[33]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[34]  J. Eisert,et al.  Dynamical structure factors of dynamical quantum simulators , 2019, Proceedings of the National Academy of Sciences.

[35]  R. Rossignoli,et al.  History state formalism for scalar particles , 2019, Physical Review D.

[36]  Shu Chen,et al.  Signature of a nonequilibrium quantum phase transition in the long-time average of the Loschmidt echo , 2019, Physical Review B.

[37]  Č. Brukner,et al.  Quantum clocks and the temporal localisability of events in the presence of gravitating quantum systems , 2019, Nature Communications.

[38]  Álvaro M. Alhambra,et al.  Time Evolution of Correlation Functions in Quantum Many-Body Systems. , 2019, Physical review letters.

[39]  S. Ledesma,et al.  Parallel-in-time optical simulation of history states , 2019, Physical Review A.

[40]  Peter Zoller,et al.  Quantum localization bounds Trotter errors in digital quantum simulation , 2018, Science Advances.

[41]  Diogo O. Soares-Pinto,et al.  Time as a consequence of internal coherence , 2018, Proceedings of the Royal Society A.

[42]  Peter Zoller,et al.  Probing Rényi entanglement entropy via randomized measurements , 2018, Science.

[43]  R. Rossignoli,et al.  History state formalism for Dirac’s theory , 2018, Physical Review D.

[44]  G. Yocky,et al.  Decoherence , 2018, Principles of Quantum Computation and Information.

[45]  R. Rossignoli,et al.  History states of systems and operators , 2018, Physical Review A.

[46]  C. Gogolin,et al.  Eigenstate Thermalization for Degenerate Observables. , 2017, Physical review letters.

[47]  H. Neven,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[48]  Patrick J. Coles,et al.  Learning the quantum algorithm for state overlap , 2018, New Journal of Physics.

[49]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[50]  J. Fitzsimons,et al.  Geometry of quantum correlations in space-time , 2017, Physical Review A.

[51]  Jordan S. Cotler,et al.  Superdensity operators for spacetime quantum mechanics , 2017, Journal of High Energy Physics.

[52]  A. Hamma,et al.  Many-Body Localization Transition, Temporal Fluctuations of the Loschmidt Echo, and Scrambling , 2017, 1702.00445.

[53]  Cristian Romero García,et al.  Quantum Machine Learning , 2017, Encyclopedia of Machine Learning and Data Mining.

[54]  Matthew F Pusey,et al.  Can a quantum state over time resemble a quantum state at a single time? , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[55]  D. J. Luitz,et al.  Anomalous Thermalization in Ergodic Systems. , 2016, Physical review letters.

[56]  M. Cerezo,et al.  System-time entanglement in a discrete time model , 2015, 1512.07313.

[57]  R. Somma A Trotter-Suzuki approximation for Lie groups with applications to Hamiltonian simulation , 2015, 1512.03416.

[58]  S. R. Clark,et al.  Non-linear quantum-classical scheme to simulate non-equilibrium strongly correlated fermionic many-body dynamics , 2015, Scientific Reports.

[59]  Matthew B. Hastings,et al.  Hybrid quantum-classical approach to correlated materials , 2015, 1510.03859.

[60]  Seth Lloyd,et al.  Quantum Time , 2015, 1504.04215.

[61]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[62]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[63]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[64]  A. J. Short,et al.  Quantum systems equilibrate rapidly for most observables. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[65]  J. S. Pedernales,et al.  Efficient quantum algorithm for computing n-time correlation functions. , 2014, Physical review letters.

[66]  Peter Reimann,et al.  Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Gus Gutoski,et al.  Quantum interactive proofs and the complexity of entanglement detection , 2013, Theory Comput..

[68]  G. Mussardo Infinite-time average of local fields in an integrable quantum field theory after a quantum quench. , 2013, Physical review letters.

[69]  T. Tohyama,et al.  Persistent spin excitations in doped antiferromagnets revealed by resonant inelastic light scattering , 2013, Nature Communications.

[70]  M. Rigol,et al.  Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a quench. , 2013, Physical review letters.

[71]  Vlatko Vedral,et al.  Quantum correlations which imply causation , 2013, Scientific Reports.

[72]  Alán Aspuru-Guzik,et al.  Feynman’s clock, a new variational principle, and parallel-in-time quantum dynamics , 2013, Proceedings of the National Academy of Sciences.

[73]  C. Rovelli Quantum Gravity: third edition , 2012 .

[74]  Rodolfo Jalabert,et al.  Loschmidt echo , 2012, Scholarpedia.

[75]  Karel V. Kuchař,et al.  TIME AND INTERPRETATIONS OF QUANTUM GRAVITY , 2011 .

[76]  Mark M. Wilde,et al.  From Classical to Quantum Shannon Theory , 2011, ArXiv.

[77]  P. Zanardi,et al.  Exact infinite-time statistics of the Loschmidt echo for a quantum quench. , 2011, Physical review letters.

[78]  R. Zeier,et al.  Symmetry principles in quantum systems theory , 2010, 1012.5256.

[79]  D. Huse,et al.  The many-body localization transition , 2010, 1003.2613.

[80]  P. Zanardi,et al.  Universality in the equilibration of quantum systems after a small quench , 2010 .

[81]  K. Kiefer,et al.  Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry , 2010, Science.

[82]  Ashley Montanaro,et al.  Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization , 2010, JACM.

[83]  A. J. Short,et al.  Quantum mechanical evolution towards thermal equilibrium. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  J. Pullin,et al.  Conditional probabilities with Dirac observables and the problem of time in quantum gravity , 2008, 0809.4235.

[85]  R. Rossignoli,et al.  Entanglement between distant qubits in cyclic X X chains , 2007, 0906.0801.

[86]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[87]  D. Minic,et al.  What is Quantum Theory of Gravity , 2004, hep-th/0401028.

[88]  Shengjun Wu,et al.  What is quantum entanglement , 2003 .

[89]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[90]  G. Auletta Foundations and Interpretation of Quantum Mechanics: In the Light of a Critical-Historical Analysis of the Problems and of a Synthesis of the Results , 2000 .

[91]  R. Feynman Simulating physics with computers , 1999 .

[92]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[93]  N. Linden,et al.  Continuous histories and the history group in generalized quantum theory , 1995, gr-qc/9503063.

[94]  D. Marolf Quantum observables and recollapsing dynamics , 1994, gr-qc/9404053.

[95]  C. J. Isham,et al.  Quantum logic and the histories approach to quantum theory , 1993 .

[96]  C. Isham Canonical quantum gravity and the problem of time , 1992, gr-qc/9210011.

[97]  Y. Sinai Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential , 1987 .

[98]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[99]  M. Wilkinson Critical properties of electron eigenstates in incommensurate systems , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[100]  William K. Wootters,et al.  Evolution without evolution: Dynamics described by stationary observables , 1983 .

[101]  J. S. Dowker,et al.  Green's Functions and Condensed Matter , 1982 .

[102]  B. Dewitt Quantum Theory of Gravity. I. The Canonical Theory , 1967 .

[103]  E. Lieb,et al.  Two Soluble Models of an Antiferromagnetic Chain , 1961 .

[104]  Paul Adrien Maurice Dirac,et al.  The theory of gravitation in Hamiltonian form , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[105]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[106]  T. Paul,et al.  Quantum computation and quantum information , 2001, SOEN.

[107]  C Rovelli,et al.  Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories , 1994 .

[108]  M. Redhead Quantum theory and measurement , 1984 .