Travelling Waves for Adaptive Grid Discretizations of Reaction Diffusion Systems I: Well-Posedness

In this paper we consider a spatial discretization scheme with an adaptive grid for the Nagumo PDE. In particular, we consider a commonly used time dependent moving mesh method that aims to equidistribute the arclength of the solution under consideration. We assume that the discrete analogue of this equidistribution is strictly enforced, which allows us to reduce the effective dynamics to a scalar non-local problem with infinite range interactions. We show that this reduced problem is well-posed and obtain useful estimates on the resulting nonlinearities. In the sequel papers (Hupkes and Van Vleck in Travelling waves for adaptive grid discretizations of reaction diffusion systems II: linear theory; Travelling waves for adaptive grid discretizations of reaction diffusion systems III: nonlinear theory) we use these estimates to show that travelling waves persist under these adaptive spatial discretizations.

[1]  Petr Stehlík,et al.  Maximum Principles for Discrete and Semidiscrete Reaction-Diffusion Equation , 2015 .

[2]  Christopher E. Elmer,et al.  Anisotropy, propagation failure, and wave speedup in traveling waves of discretizations of a Nagumo PDE , 2003 .

[3]  D. Aronson,et al.  Multidimensional nonlinear di u-sion arising in population genetics , 1978 .

[4]  Robert D. Russell,et al.  Adaptivity with moving grids , 2009, Acta Numerica.

[5]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[6]  Shui-Nee Chow,et al.  Traveling Waves in Lattice Dynamical Systems , 1998 .

[7]  David H. Sattinger Weighted norms for the stability of traveling waves , 1977 .

[8]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[9]  H. J. Hupkes,et al.  Travelling Waves for Adaptive Grid Discretizations of Reaction Diffusion Systems III: Nonlinear Theory , 2022, Journal of Dynamics and Differential Equations.

[10]  Hans F. Weinberger,et al.  Long-Time Behavior of a Class of Biological Models , 1982 .

[11]  I. Babuska,et al.  Analysis of Optimal Finite Element Meshes in R1 , 1979 .

[12]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[13]  B. Zinner,et al.  Stability of traveling wavefronts for the discrete Nagumo equation , 1991 .

[14]  Ivo Babuška,et al.  Analysis of optimal finite-element meshes in ¹ , 1979 .

[15]  Violaine Roussier Stability of radially symmetric travelling waves in reaction–diffusion equations , 2004 .

[16]  Erik S. Van Vleck,et al.  Traveling Wavefronts in an Antidiffusion Lattice Nagumo Model , 2011, SIAM J. Appl. Dyn. Syst..

[17]  D. M. Sloan,et al.  Analysis of difference approximations to a singularly perturbed two-point boundary value problem on an adaptively generated grid , 1999 .

[18]  W. M. Schouten-Straatman,et al.  Traveling Waves and Pattern Formation for Spatially Discrete Bistable Reaction-Diffusion Equations , 2018 .

[19]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[20]  G. Carpenter A geometric approach to singular perturbation problems with applications to nerve impulse equations , 1977 .

[21]  Hiroshi Matano,et al.  Bistable traveling waves around an obstacle , 2009 .

[22]  J. Mackenzie,et al.  On a uniformly accurate finite difference approximation of a singulary peturbed reaction-diffusion problem using grid equidistribution , 2001 .

[23]  Yong Wang,et al.  One-way hash function construction based on 2D coupled map lattices , 2008, Inf. Sci..

[24]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[25]  E. Vleck,et al.  Travelling Waves for Complete Discretizations of Reaction Diffusion Systems , 2016 .

[26]  D. M. Sloan,et al.  Numerical Solution of Fisher's Equation Using a Moving Mesh Method , 1998 .

[27]  Weizhang Huang,et al.  Moving Mesh Methods Based on Moving Mesh Partial Differential Equations , 1994 .

[28]  Xinfu Chen,et al.  Traveling Waves in Discrete Periodic Media for Bistable Dynamics , 2008 .

[29]  Erik S. Van Vleck,et al.  Nucleation and propagation of phase mixtures in a bistable chain , 2009 .

[30]  Peter W. Bates,et al.  A Discrete Convolution Model¶for Phase Transitions , 1999 .

[31]  Robert D. Russell,et al.  Moving Mesh Techniques Based upon Equidistribution, and Their Stability , 1992, SIAM J. Sci. Comput..

[32]  Björn Sandstede,et al.  Fast Pulses with Oscillatory Tails in the FitzHugh-Nagumo System , 2015, SIAM J. Math. Anal..

[33]  John W. Cahn,et al.  Theory of crystal growth and interface motion in crystalline materials , 1960 .

[34]  Weizhang Huang,et al.  On the mesh nonsingularity of the moving mesh PDE method , 2018, Math. Comput..

[35]  B. Sandstede,et al.  Fast and Slow Waves in the FitzHugh–Nagumo Equation , 1997 .

[36]  B. Zinner,et al.  Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .

[37]  Robert D. Russell,et al.  Moving Mesh Methods for Problems with Blow-Up , 1996, SIAM J. Sci. Comput..

[38]  H. Matano,et al.  Large time behavior of disturbed planar fronts in the Allen–Cahn equation☆ , 2011 .

[39]  Natalia Kopteva,et al.  A Robust Adaptive Method for a Quasi-Linear One-Dimensional Convection-Diffusion Problem , 2001, SIAM J. Numer. Anal..

[40]  Willem M. Schouten-Straatman,et al.  Nonlinear stability of pulse solutions for the discrete FitzHugh-Nagumo equation with infinite-range interactions , 2018, Discrete & Continuous Dynamical Systems - A.

[41]  Christopher Jones,et al.  Stability of the travelling wave solution of the FitzHugh-Nagumo system , 1984 .

[42]  Christopher E. Elmer,et al.  Dynamics of monotone travelling fronts for discretizations of Nagumo PDEs , 2005 .

[43]  S. P. Hastings,et al.  On travelling wave solutions of the Hodgkin-Huxley equations , 1976 .

[44]  John Mallet-Paret,et al.  The Global Structure of Traveling Waves in Spatially Discrete Dynamical Systems , 1999 .

[45]  M. Lewis,et al.  Invasion with stage-structured coupled map lattices: Application to the spread of scentless chamomile , 2009 .

[46]  Björn Sandstede,et al.  Stability of Traveling Pulses with Oscillatory Tails in the FitzHugh–Nagumo System , 2016, J. Nonlinear Sci..

[47]  R. FitzHugh,et al.  Motion picture of nerve impulse propagation using computer animation. , 1968, Journal of applied physiology.

[48]  Tao Tang,et al.  Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence , 2000 .

[49]  Chris Cosner,et al.  Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons , 1984 .

[50]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .