Machine Learning in High Energy Physics Community White Paper

Machine learning is an important applied research area in particle physics, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applicatio ...

Eli Upfal | Gilles Louppe | Stefan Wunsch | Dorian Kcira | Gabriel Perdue | Lorenzo Moneta | Amir Farbin | David Rousseau | Kyle Cranmer | Paolo Calafiura | Konstantin Kanishchev | Benedikt Hegner | Mauro Verzetti | Kim Albertsson | Lukas Heinrich | Harvey B. Newman | Helge Meinhard | Eduardo Rodrigues | Aaron Sauers | Jean-Roch Vlimant | Jim Pivarski | Wenjing Wu | Mark Neubauer | Karen Tomko | Michela Paganini | Daniele Bonacorsi | Mario Lassnig | Xavier Vilasís-Cardona | Luke Kreczko | Hans Pabst | Ilija Vukotic | Dario Menasce | Thomas Keck | Jamal Rorie | Stefano Carrazza | Sofia Vallecorsa | Piero Altoe | Paul Seyfert | Louis Capps | Mario Campanelli | Bob Stienen | Horst Severini | Maria Girone | Federico Carminati | Wahid Bhimji | Andrey Ustyuzhanin | Alexei Klimentov | Sergei Gleyzer | Valentin Kuznetsov | Michael Kagan | Taylor Childers | Matthew Feickert | Seth Moortgat | Attilio Picazio | Ariel Schwartzman | Elias Coniavitis | Steven Schramm | Alessandra Forti | Kevin Lannon | Martin Erdmann | Vladimir Gligorov | Gordon Watts | Lindsey Gray | Jim Kowalkowski | Conor Fitzpatrick | John Harvey | Meghan Kane | Fernanda Psihas | Tobias Golling | Thomas Hacker | Antonio Limosani | Dustin Anderson | Graeme Andrew Stewart | Jochen Gemmler | Alexander Radovic | Pere Mato | Michael Andrews | Javier Duarte | Adrian Bevan | Filip Siroky | Harrison Prosper | Ian Stockdale | Jonas Eschle | Juan Pedro Araque Espinosa | Nuno Filipe Castro | Paul Glaysher | Douglas Davis | Przemyslaw Karpinski | Alexander Kurepin | Savannah Thais | Michael Williams | Adam Aurisano | Laurent Basara | Claire David | Michele Floris | Jordi Garra-Tico | Jonas Graw | Dick Greenwood | Ben Hooberman | Johannes Junggeburth | Zahari Kassabov | Gaurav Kaul | Rob Kutschke | Nicolas Köhler | Igor Lakomov | Aashrita Mangu | Narain Meenakshi | Manfred Paulini | Uzziel Perez | Ryan Reece | Aurelius Rinkevicius | Konstantin Skazytkin | Mike Sokoloff | Giles Strong | Emanuele Usai | Martin Vala | Sean-Jiun Wang | Omar Zapata | E. Upfal | Gilles Louppe | H. Prosper | A. Aurisano | M. Campanelli | K. Lannon | M. Neubauer | M. Paulini | Javier Mauricio Duarte | K. Cranmer | K. Tomko | M. Sokoloff | D. Rousseau | L. Heinrich | W. Bhimji | N. Castro | E. Coniavitis | A. Farbin | A. Forti | T. Golling | M. Kagan | A. Klimentov | M. Lassnig | A. Limosani | A. Picazio | R. Reece | A. Schwartzman | H. Severini | G. Stewart | S. Vallecorsa | I. Vukotic | G. Watts | V. Gligorov | A. Ustyuzhanin | J. Vlimant | J. Gemmler | S. Schramm | M. Erdmann | D. Bonacorsi | D. Menasce | K. Kanishchev | B. Hegner | M. Verzetti | H. Newman | B. Hooberman | J. Pivarski | S. Gleyzer | L. Gray | M. Girone | J. Harvey | L. Moneta | C. David | P. Glaysher | Michela Paganini | R. Kutschke | P. Mato | H. Meinhard | G. Perdue | F. Carminati | Hans Pabst | D. Anderson | J. Kowalkowski | T. Keck | S. Wunsch | G. Strong | S. Moortgat | E. Usai | M. Andrews | T. Childers | Sean Wang | J. Rorie | C. Fitzpatrick | A. Bevan | P. Glaysher | D. Kcira | S. Carrazza | S. Thais | M. Feickert | J. Junggeburth | Z. Kassabov | P. Seyfert | X. Vilasís-Cardona | M. Vala | M. Floris | I. Lakomov | A. Radovic | F. Psihas | J. Eschle | V. Kuznetsov | M. Kane | B. Stienen | L. Basara | Filip Siroky | A. Mangu | I. Stockdale | A. Kurepin | P. Calafiura | N. Meenakshi | Gaurav Kaul | K. Albertsson | Nicolas Köhler | L. Kreczko | E. Rodrigues | D. Davis | O. Zapata | Michael Williams | Piero Altoe | Louis Capps | J. Garra-Tico | Jonas Graw | D. Greenwood | T. Hacker | P. Karpinski | Uzziel Perez | Aurelius Rinkevicius | A. Sauers | Konstantin Skazytkin | Wenjing Wu | H. Newman | M. Erdmann | Kyle Cranmer | A. Limosani | Stefan Wunsch | Valentin Kuznetsov

[1]  I. Volobouev,et al.  Matrix Element Method in HEP: Transfer Functions, Efficiencies, and Likelihood Normalization , 2011, 1101.2259.

[2]  P. Barria,et al.  First Observation of Elec-troweak Single Top Quark Production , 2009 .

[3]  A Gheata,et al.  arXiv : HEP Software Foundation Community White Paper Working Group - Detector Simulation , 2018, 1803.04165.

[4]  Frank Fiedler,et al.  The matrix element method and its application to measurements of the top quark mass , 2010, 1003.1316.

[5]  Barnabás Póczos,et al.  End-to-End Jet Classification of Quarks and Gluons with the CMS Open Data , 2019, ArXiv.

[6]  et al,et al.  First Measurement of ZZ Production in ppbar Collisions at sqrt(s)=1.96 TeV , 2008, 0801.4806.

[7]  Walter Lampl,et al.  A Roadmap for HEP Software and Computing R&D for the 2020s , 2019 .

[8]  S. Jadach Foam: A general-purpose cellular Monte Carlo event generator☆☆☆ , 2003 .

[9]  K. Cranmer,et al.  HistFactory: A tool for creating statistical models for use with RooFit and RooStats , 2012 .

[10]  Dustin Tran,et al.  Deep Probabilistic Programming , 2017, ICLR.

[11]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[12]  G De Lorenzo,et al.  Observation of electroweak single top-quark production. , 2009, Physical review letters.

[13]  O. Mattelaer,et al.  The Matrix Element Method and QCD Radiation , 2010, 1010.2263.

[14]  Mike Williams,et al.  Event generator tuning using Bayesian optimization , 2016, 1610.08328.

[15]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[16]  Ke Wang,et al.  Spline Basis Neural Network Algorithm for Numerical Integration , 2013 .

[17]  Barnabás Póczos,et al.  End-to-End Physics Event Classification with the CMS Open Data: Applying Image-based Deep Learning on Detector Data to Directly Classify Collision Events at the LHC , 2018, ArXiv.

[18]  M. Feindt,et al.  The NeuroBayes neural network package , 2006 .

[19]  Michela Paganini,et al.  CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks , 2017, ArXiv.

[20]  K. Bos,et al.  A precision measurement of the mass of the top quark , 2004 .

[21]  Sahal Yacoob,et al.  Evidence for single top-quark production in the s-channel in proton–proton collisions at s=8 TeV with the ATLAS detector using the Matrix Element Method , 2015, 1511.05980.

[22]  Andrea Benaglia,et al.  Measurement of spin correlations in tt production using the matrix element method in the muon+jets final state in pp collisions at √s=8 TeV , 2016 .

[23]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[24]  Li-ying Xu,et al.  The New Numerical Integration Algorithm Based on Neural Network , 2007, Third International Conference on Natural Computation (ICNC 2007).

[25]  Yoshua Bengio,et al.  Generative Adversarial Networks , 2014, ArXiv.

[26]  V. Lemaitre,et al.  Automation of the matrix element reweighting method , 2010, 1007.3300.

[27]  Daniel S. Katz,et al.  HEP Software Foundation Community White Paper Working Group - Training, Staffing and Careers , 2018 .

[28]  A. Heinson,et al.  Observation of Single Top Quark Production , 2011, 1101.1275.

[29]  Ian Foster,et al.  Designing and building parallel programs , 1994 .

[30]  Nikita Kazeev,et al.  Machine-Learning-based global particle-identification algorithms at the LHCb experiment , 2018 .

[31]  Amsterdam,et al.  arXiv : HEP Community White Paper on Software trigger and event reconstruction , 2018, 1802.08638.

[32]  J. A. Hernando Morata,et al.  Search for the lepton flavour violating decay τ− → μ−μ+μ− , 2014, 1409.8548.

[33]  Joshua Bendavid,et al.  Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative Deep Neural Networks , 2017, 1707.00028.

[34]  G. Lepage A new algorithm for adaptive multidimensional integration , 1978 .

[35]  Adam Martin,et al.  Using the modified matrix element method to constrain $L_\mu - L_\tau$ interactions , 2017, 1705.02563.

[36]  F. Tegenfeldt,et al.  TMVA - Toolkit for multivariate data analysis , 2012 .

[37]  S. M. Etesami,et al.  Search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks using a matrix element method , 2015, The European physical journal. C, Particles and fields.

[38]  Wouter Verkerke,et al.  The RooFit Toolkit for Data Modeling , 2003 .

[39]  V. M. Ghete,et al.  Measurement of the properties of a Higgs boson in the four-lepton final state , 2014 .

[40]  William H. Press,et al.  Recursive stratified sampling for multidimensional Monte Carlo integration , 1990 .

[41]  Mike Williams,et al.  Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree , 2012, 1210.6861.

[42]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[43]  The Cms Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC , 2012, 1207.7235.

[44]  P. Mato,et al.  Facilitating Collaborative Analysis in SWAN , 2019 .

[45]  Alex Rogozhnikov,et al.  Inclusive Flavour Tagging Algorithm , 2016, 1705.08707.

[46]  Trevor Hastie,et al.  Additive Logistic Regression : a Statistical , 1998 .

[47]  Alfio Lazzaro,et al.  The RooStats Project , 2010, 1009.1003.

[48]  Wen Hui,et al.  Numerical Integration Based on a Neural Network Algorithm , 2006, Comput. Sci. Eng..

[49]  J. Rojo Parton Distributions for the LHC Run II , 2016 .

[50]  J. T. Childers,et al.  Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector , 2014, 1408.5191.

[51]  M. Soderberg,et al.  Strong evidence for ZZ production in pp̄ collisions at s=1.96TeV , 2008 .

[52]  J. T. Childers,et al.  Search for the Standard Model Higgs boson produced in association with top quarks and decaying into $$\varvec{b\bar{b}}$$bb¯ in $$\varvec{pp}$$pp collisions at $$\sqrt{\mathbf{s}}= \varvec{8{{\,\mathrm TeV}}}$$s=8TeV with the ATLAS detector , 2015, The European physical journal. C, Particles and fields.

[53]  C. Delaere,et al.  MoMEMta, a modular toolkit for the Matrix Element Method at the LHC , 2018, The European Physical Journal C.

[54]  M. Feindt A Neural Bayesian Estimator for Conditional Probability Densities , 2004, physics/0402093.

[55]  K. Kondo Dynamical Likelihood Method for Reconstruction of Events with Missing Momentum. I. Method and Toy Models , 1988 .

[56]  Isabelle Guyon,et al.  NIPS 2014 Workshop on High-energy Physics and Machine Learning , 2015, NIPS 2015.

[57]  C. Collaboration,et al.  Precision measurement of the top quark mass from dilepton events at CDF II , 2006, hep-ex/0612060.

[58]  Massimo Casarsa Inclusive Search for Standard Model Higgs Boson Production in the WW Decay Channel Using the CDF II Detector , 2013 .

[59]  Sean Benson,et al.  The LHCb Turbo Stream , 2015 .

[60]  Lukasz Zwalinski,et al.  Search for the Standard Model Higgs boson produced in association with top quarks and decaying into in collisions at with the ATLAS detector , 2015 .

[61]  Lennaert Bel The LHCb Starterkit , 2016 .

[62]  Christoph Deil,et al.  Scikit-Hep/Root_Numpy: 4.7.3 , 2017 .

[63]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[64]  Stefano Carrazza,et al.  APFELgrid : A high performance tool for parton density determinations , 2016, Comput. Phys. Commun..

[65]  Thorsten Ohl,et al.  Vegas revisited : Adaptive Monte Carlo integration beyond factorization , 1998, hep-ph/9806432.