Clustering of polarization-encoded images.

Polarization-encoded imaging consists of the distributed measurements of polarization parameters for each pixel of an image. We address clustering of multidimensional polarization-encoded images. The spatial coherence of polarization information is considered. Two methods of analysis are proposed: polarization contrast enhancement and a more-sophisticated image-processing algorithm based on a Markovian model. The proposed algorithms are applied and validated with two different Mueller images acquired by a fully polarimetric imaging system.

[1]  C. Givens,et al.  Constraints on Mueller matrices of polarization optics. , 1993, Applied optics.

[2]  Matthew H. Smith,et al.  Multispectral infrared Stokes imaging polarimeter , 1999, Optics + Photonics.

[3]  Wojciech Pieczynski,et al.  Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Patrick Pérez,et al.  Restriction of a Markov random field on a graph and multiresolution statistical image modeling , 1996, IEEE Trans. Inf. Theory.

[5]  Stefan Rahmann,et al.  Polarization images: a geometric interpretation for shape analysis , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[6]  G. Kattawar,et al.  Relationships between elements of the Stokes matrix. , 1981, Applied optics.

[7]  B. Howell,et al.  Measurement of the polarization effects of an instrument using partially polarized light. , 1979, Applied optics.

[8]  E. Landi Degl'Innocenti,et al.  Physical significance of experimental Mueller matrices , 1998 .

[9]  P. Roberts,et al.  Backscattering target detection in a turbid medium by polarization discrimination. , 1999, Applied optics.

[10]  C. Mee An eigenvalue criterion for matrices transforming Stokes parameters , 1993 .

[11]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[12]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  P Artal,et al.  Double-pass imaging polarimetry in the human eye. , 1999, Optics letters.

[14]  R. Simon,et al.  Characterization of Mueller matrices in polarization optics , 1992 .

[15]  Francoise J. Preteux,et al.  Hierarchical Markov random field models applied to image analysis: a review , 1995, Optics + Photonics.

[16]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[17]  Russell A. Chipman,et al.  Mueller matrices and the degree of polarization , 1998 .

[18]  R. Chipman,et al.  Polarimetric images of a cone. , 1999, Optics express.

[19]  Matthew H. Smith,et al.  Interpreting Mueller matrix images of tissues , 2001, SPIE BiOS.

[20]  Donald G. M. Anderson,et al.  Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix , 1994 .

[21]  S. Cloude Group theory and polarisation algebra , 1986 .

[22]  Patrick Pérez,et al.  Noniterative Manipulation of Discrete Energy-Based Models for Image Analysis , 1997, EMMCVPR.

[23]  R. Sridhar,et al.  Normal form for Mueller Matrices in Polarization Optics , 1994 .

[24]  Patrick Pérez,et al.  Three-Class Markovian Segmentation of High-Resolution Sonar Images , 1999, Comput. Vis. Image Underst..

[25]  Z. Xing,et al.  On the Deterministic and Non-deterministic Mueller Matrix , 1992 .

[26]  Alexander B. Kostinski,et al.  A Simple Necessary and Sufficient Condition on Physically Realizable Mueller Matrices , 1993 .

[27]  Pierre Lanchantin,et al.  Statistical image segmentation using triplet Markov fields , 2003, SPIE Remote Sensing.

[28]  G. Kattawar,et al.  Virtues of mueller matrix imaging for underwater target detection. , 1999, Applied optics.

[29]  Josiane Zerubia,et al.  A Hierarchical Markov Random Field Model and Multitemperature Annealing for Parallel Image Classification , 1996, CVGIP Graph. Model. Image Process..

[30]  W. Clem Karl,et al.  Multiscale representations of Markov random fields , 1993, IEEE Trans. Signal Process..

[31]  Patrick Pérez,et al.  Discrete Markov image modeling and inference on the quadtree , 2000, IEEE Trans. Image Process..

[32]  R. Chipman,et al.  Interpretation of Mueller matrices based on polar decomposition , 1996 .

[33]  W. Clem Karl,et al.  Multiscale representations of Markov random fields , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[34]  R. Azzam,et al.  Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal. , 1978, Optics letters.

[35]  J. Hovenier,et al.  Structure of matrices transforming Stokes parameters , 1992 .

[36]  Christophe Collet,et al.  Unsupervised Multispectral Image Segmentation Using Generalized Gaussian Noise Model , 1999, EMMCVPR.