Modeling of a Fluid-structure coupled system using port-Hamiltonian formulation
暂无分享,去创建一个
Denis Matignon | Flavio Luiz Cardoso-Ribeiro | Valérie Pommier-Budinger | D. Matignon | V. Pommier-Budinger | F. Cardoso-Ribeiro
[1] Denis Matignon,et al. A class of damping models preserving eigenspaces for linear conservative port-Hamiltonian systems , 2013, Eur. J. Control.
[2] Hans Zwart,et al. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .
[3] Kirsten Morris,et al. Strong stabilization of piezoelectric beams with magnetic effects , 2013, 52nd IEEE Conference on Decision and Control.
[4] Dewey H. Hodges,et al. Introduction to Structural Dynamics and Aeroelasticity , 2002 .
[5] Pierre Rouchon,et al. Dynamics and solutions to some control problems for water-tank systems , 2002, IEEE Trans. Autom. Control..
[6] van der Arjan Schaft,et al. On the Hamiltonian Formulation of Nonholonomic Mechanical Systems , 1994 .
[7] Laurent Lefèvre,et al. Control by interconnection and energy shaping methods of port Hamiltonian models - Application to the shallow water equations , 2009, ECC.
[8] Denis Arzelier,et al. Modeling of a coupled fluid-structure system excited by piezoelectric actuators , 2014, 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
[9] Bernhard Maschke,et al. Port Hamiltonian System in Descriptor Form for Balanced Reduction: Application to a Nanotweezer , 2014 .
[10] Volker Mehrmann,et al. Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .
[11] Arjan van der Schaft,et al. Hamiltonian discretization of boundary control systems , 2004, Autom..
[12] Alessandro Macchelli,et al. An Algorithm to Discretize One-Dimensional Distributed Port Hamiltonian Systems , 2007 .
[13] Boussad Hamroun. Approche hamiltonienne à ports pour la modélisation, la réduction et la commande des systèmes non linéaires à paramètres distribués : application aux écoulements à surface libre , 2009 .
[14] Stefano Stramigioli,et al. Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .
[15] Laurent Lefèvre,et al. Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws , 2012, J. Comput. Phys..
[16] Jacquelien M. A. Scherpen,et al. Port-Hamiltonian Modeling of a Nonlinear Timoshenko Beam with Piezo Actuation , 2014, SIAM J. Control. Optim..