Hexagonally ordered arrays of metallic nanodots from thin films of functional block copolymers

We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures. (c) 2010 Elsevier Ltd. All rights reserved.

[1]  Todd Emrick,et al.  Self-directed self-assembly of nanoparticle/copolymer mixtures , 2005, Nature.

[2]  J. Spatz,et al.  Substrate‐induced lateral micro‐phase separation of a diblock copolymer , 1996 .

[3]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[4]  A. Balazs,et al.  Predicting the Mesophases of Copolymer-Nanoparticle Composites , 2001, Science.

[5]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[6]  M. Liley,et al.  Micrometer-long gold nanowires fabricated using block copolymer templates. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[7]  I. Hamley,et al.  Nanotechnology with soft materials. , 2003, Angewandte Chemie.

[8]  Bumjoon J. Kim,et al.  Nanoparticle‐Induced Phase Transitions in Diblock‐Copolymer Films , 2005 .

[9]  Satoru Suzuki,et al.  Single-walled carbon nanotube growth from highly activated metal nanoparticles. , 2006, Nano letters.

[10]  P. Nealey,et al.  Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates , 2003, Nature.

[11]  H. Boyen,et al.  Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films , 2000 .

[12]  Sergiy Minko,et al.  Ordered reactive nanomembranes/nanotemplates from thin films of block copolymer supramolecular assembly. , 2003, Journal of the American Chemical Society.

[13]  K. Guarini,et al.  Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. , 2000, Science.

[14]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[15]  Shinji Okazaki,et al.  Pushing the limits of lithography , 2000, Nature.

[16]  T. Hashimoto,et al.  Selective Incorporation of Palladium Nanoparticles into Microphase-Separated Domains of Poly(2-vinylpyridine)-block-polyisoprene , 1999 .

[17]  M. Kunz,et al.  Colloidal gold dispersions in polymeric matrices , 1993 .

[18]  S. Darling Directing the self-assembly of block copolymers , 2007 .

[19]  G. Riess,et al.  Micellization of block copolymers , 2003 .

[20]  R. Cohen,et al.  Cavitated block copolymer micellar thin films: Lateral arrays of open nanoreactors , 2002 .

[21]  J. Spatz,et al.  Synthesis of Quasi‐Hexagonal Ordered Arrays of Metallic Nanoparticles with Tuneable Particle Size , 2008 .

[22]  Jillian M. Buriak,et al.  Assembly of aligned linear metallic patterns on silicon , 2007, Nature Nanotechnology.

[23]  Joachim P. Spatz,et al.  Micellar Nanoreactors—Preparation and Characterization of Hexagonally Ordered Arrays of Metallic Nanodots , 2003 .

[24]  Soojin Park,et al.  From nanorings to nanodots by patterning with block copolymers. , 2008, Nano letters.

[25]  Bumjoon J. Kim,et al.  Control of nanoparticle location in block copolymers. , 2005, Journal of the American Chemical Society.

[26]  Jinan Chai,et al.  Using cylindrical domains of block copolymers to self-assemble and align metallic nanowires. , 2008, ACS nano.

[27]  A. Kellock,et al.  Metal particle adsorption and diffusion in a model polymer/metal composite system , 1995 .

[28]  S. Darling,et al.  Self‐Organization of FePt Nanoparticles on Photochemically Modified Diblock Copolymer Templates , 2005 .

[29]  T. Emrick,et al.  Directed Deposition of Nanoparticles Using Diblock Copolymer Templates , 2003 .

[30]  I. Hamley Nanostructure fabrication using block copolymers , 2003 .

[31]  Heinrich M. Jaeger,et al.  Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds , 2001, Nature.

[32]  L. J. Guo,et al.  Nanoimprint Lithography: Methods and Material Requirements , 2007 .

[33]  Joachim P. Spatz,et al.  Micellar Inorganic–Polymer Hybrid Systems—A Tool for Nanolithography , 1999 .

[34]  Thomas P. Russell,et al.  Inorganic Nanodots from Thin Films of Block Copolymers , 2004 .

[35]  S. Chou,et al.  Ultrafast and direct imprint of nanostructures in silicon , 2002, Nature.

[36]  Bhanu Nandan,et al.  Highly ordered palladium nanodots and nanowires from switchable block copolymer thin films , 2009, Nanotechnology.

[37]  Soojin Park,et al.  A simple route to highly oriented and ordered nanoporous block copolymer templates. , 2008, ACS nano.

[38]  I. Hamley,et al.  Templating the patterning of gold nanoparticles using a stained triblock copolymer film surface , 2003 .

[39]  S. Krishnamoorthy,et al.  Nanoscale patterning with block copolymers , 2006 .

[40]  T. Emrick,et al.  Controlled placement of CdSe nanoparticles in diblock copolymer templates by electrophoretic deposition. , 2005, Nano letters.

[41]  C. Ober,et al.  Recent progress in high resolution lithography , 2006 .

[42]  Joachim P. Spatz,et al.  Gold nanoparticles in micellar poly(styrene)‐b‐poly(ethylene oxide) films—size and interparticle distance control in monoparticulate films , 1996 .

[43]  M. Natan,et al.  Nanoscale characterization of gold colloid monolayers:  a comparison of four techniques. , 1997, Analytical chemistry.

[44]  A. Plettl,et al.  A Combined Top–Down/Bottom–Up Approach to the Microscopic Localization of Metallic Nanodots , 2002 .

[45]  R. Segalman Patterning with block copolymer thin films , 2005 .

[46]  Massimo Lazzari,et al.  Block Copolymers as a Tool for Nanomaterial Fabrication , 2003 .

[47]  Nan Yao,et al.  Nanolithographic templates from diblock copolymer thin films , 1996 .

[48]  Alexander Eychmüller,et al.  Arrays of Inorganic Nanodots and Nanowires Using Nanotemplates Based on Switchable Block Copolymer Supramolecular Assemblies , 2009 .

[49]  Anna C. Balazs,et al.  Block Copolymer-Directed Assembly of Nanoparticles: Forming Mesoscopically Ordered Hybrid Materials , 2002 .

[50]  Agus Haryono,et al.  Controlled arrangement of nanoparticle arrays in block-copolymer domains. , 2006, Small.

[51]  Ullrich Steiner,et al.  Freestanding nanowire arrays from soft-etch block copolymer templates. , 2006, Soft matter.

[52]  J. Spatz,et al.  Noble metal loaded block ionomers: micelle organization, adsorption of free chains and formation of thin films , 1995 .

[53]  Christopher K. Ober,et al.  Block copolymer patterns and templates , 2006 .

[54]  K. Guarini,et al.  Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films , 2003 .

[55]  M. Natan,et al.  Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape , 2000 .

[56]  C. Stafford,et al.  Nanoscopic Templates from Oriented Block Copolymer Films , 2000 .

[57]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[58]  J. Spatz,et al.  Block Copolymer Micelle Nanolithography , 2003 .