Safe sets, network majority on weighted trees
暂无分享,去创建一个
Zsolt Tuza | Tadashi Sakuma | Yannis Manoussakis | Shinya Fujita | Yasuko Matsui | Sylvain Legay | Ravindra B. Bapat
[1] Dominic Lanphier,et al. Asymptotic Bounds on the Integrity of Graphs and Separator Theorems for Graphs , 2009, SIAM J. Discret. Math..
[2] Peter J. Slater,et al. Center, median, and centroid subgraphs , 1999 .
[3] C. Jordan. Sur les assemblages de lignes. , 1869 .
[4] Tadashi Sakuma,et al. Safe set problem on graphs , 2016, Discret. Appl. Math..
[5] Maciej M. Syslo,et al. Some properties of graph centroids , 1991, Ann. Oper. Res..
[6] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[7] Peter J. Slater,et al. Centers to centroids in graphs , 1978, J. Graph Theory.
[8] Leonard M. Freeman,et al. A set of measures of centrality based upon betweenness , 1977 .
[9] Hua Wang. Centroid, Leaf-centroid, and Internal-centroid , 2015, Graphs Comb..
[10] Pim van 't Hof,et al. On the Computational Complexity of Vertex Integrity and Component Order Connectivity , 2014, Algorithmica.
[11] Zsolt Tuza,et al. Network Majority on Tree Topological Network , 2016, Electron. Notes Discret. Math..
[12] M E J Newman,et al. Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[13] Zsolt Tuza,et al. Safe Sets in Graphs: Graph Classes and Structural Parameters , 2016, COCOA.
[14] Wayne Goddard,et al. A Survey of Integrity , 1992, Discret. Appl. Math..
[15] A. Vince. The integrity of a cubic graph , 2004, Discret. Appl. Math..
[16] Michal Panczyk,et al. A self–stabilizing algorithm for finding weighted centroid in trees , 2012 .
[17] David Eppstein,et al. Finding the k Shortest Paths , 1999, SIAM J. Comput..
[18] Peter J. Slater. Accretion centers: A generalization of branch weight centroids , 1981, Discret. Appl. Math..
[19] Claus Ernst,et al. On the Range of Possible Integrities of Graphs G(n, k) , 2011, Graphs Comb..