Nonlinear Ocean Waves and the Inverse Scattering Transform

For more than 200 years, the Fourier Transform has been one of the most important mathematical tools for understanding the dynamics of linear wave trains. "Nonlinear Ocean Waves and the Inverse Scattering Transform" presents the development of the nonlinear Fourier analysis of measured space and time series, which can be found in a wide variety of physical settings including surface water waves, internal waves, and equatorial Rossby waves. This revolutionary development will allow hyperfast numerical modelling of nonlinear waves, greatly advancing our understanding of oceanic surface and internal waves. Nonlinear Fourier analysis is based upon a generalization of linear Fourier analysis referred to as the inverse scattering transform, the fundamental building block of which is a generalized Fourier series called the Riemann theta function. Elucidating the art and science of implementing these functions in the context of physical and time series analysis is the goal of this book. It presents techniques and methods of the inverse scattering transform for data analysis. Geared toward both the introductory and advanced reader venturing further into mathematical and numerical analysis, this book is suitable for classroom teaching as well as research.

[1]  J. Bendat,et al.  Random Data: Analysis and Measurement Procedures , 1971 .

[2]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[3]  Yan‐Chow Ma,et al.  The Perturbed Plane‐Wave Solutions of the Cubic Schrödinger Equation , 1979 .

[4]  Numerical inverse-scattering-transform analysis of laboratory-generated surface wave trains. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Chen,et al.  Nonlinear self-modulation: An exactly solvable model. , 1988, Physical review. A, General physics.

[6]  N. Akhmediev,et al.  Exact first-order solutions of the nonlinear Schrödinger equation , 1987 .

[7]  A. Osborne,et al.  Numerical solutions of the Korteweg-di Vries equation using the periodic scattering transform m-representation , 1990 .

[8]  Bruce M. Lake,et al.  Nonlinear Dynamics of Deep-Water Gravity Waves , 1982 .

[9]  Hiroaki Ono,et al.  Nonlinear Modulation of Gravity Waves , 1972 .

[10]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[11]  Mark J. Ablowitz,et al.  On homoclinic structure and numerically induced chaos for the nonlinear Schro¨dinger equation , 1990 .

[12]  A. Osborne,et al.  The numerical inverse scattering transform for the periodic Korteweg-de Vries equation , 1993 .

[13]  John P. Boyd Equatorial Solitary Waves. Part 2: Envelope Solitons , 1983 .

[14]  G. Lamb Elements of soliton theory , 1980 .

[15]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[16]  Boris Dubrovin,et al.  Three‐Phase Solutions of the Kadomtsev–Petviashvili Equation , 1997 .

[17]  A. Osborne,et al.  Nonlinear Fourier analysis for the infinite-interval Korteweg-de Vries equation I: an algorithm for the direct scattering transform , 1991 .

[18]  Eugene R. Tracy Topics in Nonlinear Wave Theory With Applications , 1984 .

[19]  A. Osborne,et al.  Laboratory-generated, shallow-water surface waves: Analysis using the periodic, inverse scattering transform , 1994 .

[20]  Mark J. Ablowitz,et al.  Computational chaos in the nonlinear Schrödinger equation without homoclinic crossings , 1996 .

[21]  J. Dold,et al.  Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrodinger equation , 1999 .

[22]  Automatic algorithm for the numerical inverse scattering transform of the Korteweg-de Vries equation , 1994 .

[23]  P. Drazin,et al.  Solitons: An Introduction , 1989 .

[24]  A. Osborne Numerical inverse scattering transform for the periodic, defocusing nonlinear Schrödinger equation , 1993 .

[25]  The solitons of Zabusky and Kruskal revisited: perspective in terms of the periodic spectral transform , 1986 .

[26]  H. Flaschka,et al.  Nonlinear normal modes for the Toda Chain , 1982 .

[27]  P. Sabatier,et al.  Inverse Problems in Quantum Scattering Theory , 1977 .

[28]  A. Osborne,et al.  Solitons, cnoidal waves and nonlinear interactions in shallow-water ocean surface waves , 1998 .

[29]  John P. Boyd,et al.  New Directions in Solitons and Nonlinear Periodic Waves: Polycnoidal Waves, Imbricated Solitons, Weakly Nonlocal Solitary Waves, and Numerical Boundary Value Algorithms , 1989 .

[30]  Antonio Degasperis,et al.  Spectral Transform and Solitons: How to Solve and Investigate Nonlinear Evolution Equations , 1988 .

[31]  Igor Krichever,et al.  Spectral theory of two-dimensional periodic operators and its applications , 1989 .

[32]  D. McLaughlin,et al.  Canonically Conjugate Variables for the Korteweg-de Vries Equation and the Toda Lattice with Periodic Boundary Conditions*) , 1976 .

[33]  Jaideva C. Goswami,et al.  Fundamentals of wavelets , 1999 .

[34]  Henry P. McKean,et al.  Hill’s Operator and Hyperelliptic Function Theory in the Presence of Infinitely Many Branch Points , 1976 .

[35]  William H. Press,et al.  Numerical recipes , 1990 .

[36]  Miguel Onorato,et al.  The nonlinear dynamics of rogue waves and holes in deep-water gravity wave trains , 2000 .

[37]  A. Osborne,et al.  Internal Solitons in the Andaman Sea , 1980, Science.

[38]  T. Brooke Benjamin,et al.  The disintegration of wave trains on deep water Part 1. Theory , 1967, Journal of Fluid Mechanics.

[39]  Osborne Numerical construction of nonlinear wave-train solutions of the periodic Korteweg-de Vries equation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  Sergei Petrovich Novikov,et al.  NON-LINEAR EQUATIONS OF KORTEWEG-DE VRIES TYPE, FINITE-ZONE LINEAR OPERATORS, AND ABELIAN VARIETIES , 1976 .

[41]  A. R. Osborne The hyperelliptic inverse scattering transform for the periodic, defocusing nonlinear Schro¨dinger equation , 1993 .

[42]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[43]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[44]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[45]  A. R. Osborne Soliton physics and the periodic inverse scattering transform , 1995 .

[46]  Behavior of solitons in random-function solutions of the periodic Korteweg-de Vries equation. , 1993 .

[47]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[48]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[49]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[50]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .